Roll back modifications for copy, mul, add, and triad
This commit is contained in:
parent
de93c06e78
commit
f44cd6fdd2
@ -124,17 +124,19 @@ void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector
|
||||
template <size_t elements_per_lane, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void copy_kernel(const T * __restrict a, T * __restrict c)
|
||||
void copy_kernel(const T * a, T * c)
|
||||
{
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
c[gidx + j] = a[gidx + j];
|
||||
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
c[i] = a[i];
|
||||
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
// c[gidx + j] = a[gidx + j];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::copy()
|
||||
{
|
||||
copy_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
|
||||
copy_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
@ -143,18 +145,20 @@ void HIPStream<T>::copy()
|
||||
template <size_t elements_per_lane, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void mul_kernel(T * __restrict b, const T * __restrict c)
|
||||
void mul_kernel(T * b, const T * c)
|
||||
{
|
||||
const T scalar = startScalar;
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
b[gidx + j] = scalar * c[gidx + j];
|
||||
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
b[i] = scalar * c[i];
|
||||
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
// b[gidx + j] = scalar * c[gidx + j];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::mul()
|
||||
{
|
||||
mul_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
|
||||
mul_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
@ -163,17 +167,19 @@ void HIPStream<T>::mul()
|
||||
template <size_t elements_per_lane, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void add_kernel(const T * __restrict a, const T * __restrict b, T * __restrict c)
|
||||
void add_kernel(const T * a, const T * b, T * c)
|
||||
{
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
c[gidx + j] = a[gidx + j] + b[gidx + j];
|
||||
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
c[i] = a[i] + b[i];
|
||||
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
// c[gidx + j] = a[gidx + j] + b[gidx + j];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::add()
|
||||
{
|
||||
add_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
||||
add_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
@ -182,18 +188,20 @@ void HIPStream<T>::add()
|
||||
template <size_t elements_per_lane, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void triad_kernel(T * __restrict a, const T * __restrict b, const T * __restrict c)
|
||||
void triad_kernel(T * a, const T * b, const T * c)
|
||||
{
|
||||
const T scalar = startScalar;
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
a[gidx + j] = b[gidx + j] + scalar * c[gidx + j];
|
||||
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||
// a[gidx + j] = b[gidx + j] + scalar * c[gidx + j];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::triad()
|
||||
{
|
||||
triad_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
||||
triad_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
@ -220,7 +228,7 @@ void HIPStream<T>::nstream()
|
||||
|
||||
template <size_t elements_per_lane, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__ void dot_kernel(const T * __restrict a, const T * __restrict b, T * __restrict sum, int array_size)
|
||||
__global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
|
||||
{
|
||||
__shared__ T tb_sum[TBSIZE];
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user