Roll back modifications for copy, mul, add, and triad
This commit is contained in:
parent
de93c06e78
commit
f44cd6fdd2
@ -124,17 +124,19 @@ void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector
|
|||||||
template <size_t elements_per_lane, typename T>
|
template <size_t elements_per_lane, typename T>
|
||||||
__launch_bounds__(TBSIZE)
|
__launch_bounds__(TBSIZE)
|
||||||
__global__
|
__global__
|
||||||
void copy_kernel(const T * __restrict a, T * __restrict c)
|
void copy_kernel(const T * a, T * c)
|
||||||
{
|
{
|
||||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
c[i] = a[i];
|
||||||
c[gidx + j] = a[gidx + j];
|
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||||
|
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||||
|
// c[gidx + j] = a[gidx + j];
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T>
|
template <class T>
|
||||||
void HIPStream<T>::copy()
|
void HIPStream<T>::copy()
|
||||||
{
|
{
|
||||||
copy_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
|
copy_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
|
||||||
check_error();
|
check_error();
|
||||||
hipDeviceSynchronize();
|
hipDeviceSynchronize();
|
||||||
check_error();
|
check_error();
|
||||||
@ -143,18 +145,20 @@ void HIPStream<T>::copy()
|
|||||||
template <size_t elements_per_lane, typename T>
|
template <size_t elements_per_lane, typename T>
|
||||||
__launch_bounds__(TBSIZE)
|
__launch_bounds__(TBSIZE)
|
||||||
__global__
|
__global__
|
||||||
void mul_kernel(T * __restrict b, const T * __restrict c)
|
void mul_kernel(T * b, const T * c)
|
||||||
{
|
{
|
||||||
const T scalar = startScalar;
|
const T scalar = startScalar;
|
||||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
b[i] = scalar * c[i];
|
||||||
b[gidx + j] = scalar * c[gidx + j];
|
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||||
|
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||||
|
// b[gidx + j] = scalar * c[gidx + j];
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T>
|
template <class T>
|
||||||
void HIPStream<T>::mul()
|
void HIPStream<T>::mul()
|
||||||
{
|
{
|
||||||
mul_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
|
mul_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
|
||||||
check_error();
|
check_error();
|
||||||
hipDeviceSynchronize();
|
hipDeviceSynchronize();
|
||||||
check_error();
|
check_error();
|
||||||
@ -163,17 +167,19 @@ void HIPStream<T>::mul()
|
|||||||
template <size_t elements_per_lane, typename T>
|
template <size_t elements_per_lane, typename T>
|
||||||
__launch_bounds__(TBSIZE)
|
__launch_bounds__(TBSIZE)
|
||||||
__global__
|
__global__
|
||||||
void add_kernel(const T * __restrict a, const T * __restrict b, T * __restrict c)
|
void add_kernel(const T * a, const T * b, T * c)
|
||||||
{
|
{
|
||||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
c[i] = a[i] + b[i];
|
||||||
c[gidx + j] = a[gidx + j] + b[gidx + j];
|
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||||
|
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||||
|
// c[gidx + j] = a[gidx + j] + b[gidx + j];
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T>
|
template <class T>
|
||||||
void HIPStream<T>::add()
|
void HIPStream<T>::add()
|
||||||
{
|
{
|
||||||
add_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
add_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
||||||
check_error();
|
check_error();
|
||||||
hipDeviceSynchronize();
|
hipDeviceSynchronize();
|
||||||
check_error();
|
check_error();
|
||||||
@ -182,18 +188,20 @@ void HIPStream<T>::add()
|
|||||||
template <size_t elements_per_lane, typename T>
|
template <size_t elements_per_lane, typename T>
|
||||||
__launch_bounds__(TBSIZE)
|
__launch_bounds__(TBSIZE)
|
||||||
__global__
|
__global__
|
||||||
void triad_kernel(T * __restrict a, const T * __restrict b, const T * __restrict c)
|
void triad_kernel(T * a, const T * b, const T * c)
|
||||||
{
|
{
|
||||||
const T scalar = startScalar;
|
const T scalar = startScalar;
|
||||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
for (size_t j = 0; j < elements_per_lane; ++j)
|
a[i] = b[i] + scalar * c[i];
|
||||||
a[gidx + j] = b[gidx + j] + scalar * c[gidx + j];
|
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||||
|
// for (size_t j = 0; j < elements_per_lane; ++j)
|
||||||
|
// a[gidx + j] = b[gidx + j] + scalar * c[gidx + j];
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T>
|
template <class T>
|
||||||
void HIPStream<T>::triad()
|
void HIPStream<T>::triad()
|
||||||
{
|
{
|
||||||
triad_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
triad_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
|
||||||
check_error();
|
check_error();
|
||||||
hipDeviceSynchronize();
|
hipDeviceSynchronize();
|
||||||
check_error();
|
check_error();
|
||||||
@ -220,7 +228,7 @@ void HIPStream<T>::nstream()
|
|||||||
|
|
||||||
template <size_t elements_per_lane, typename T>
|
template <size_t elements_per_lane, typename T>
|
||||||
__launch_bounds__(TBSIZE)
|
__launch_bounds__(TBSIZE)
|
||||||
__global__ void dot_kernel(const T * __restrict a, const T * __restrict b, T * __restrict sum, int array_size)
|
__global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
|
||||||
{
|
{
|
||||||
__shared__ T tb_sum[TBSIZE];
|
__shared__ T tb_sum[TBSIZE];
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user