Roll back modifications for copy, mul, add, and triad

This commit is contained in:
Thomas Gibson 2022-09-05 15:43:37 -07:00
parent de93c06e78
commit f44cd6fdd2

View File

@ -124,17 +124,19 @@ void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector
template <size_t elements_per_lane, typename T> template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE) __launch_bounds__(TBSIZE)
__global__ __global__
void copy_kernel(const T * __restrict a, T * __restrict c) void copy_kernel(const T * a, T * c)
{ {
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane; const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
for (size_t j = 0; j < elements_per_lane; ++j) c[i] = a[i];
c[gidx + j] = a[gidx + j]; // const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// c[gidx + j] = a[gidx + j];
} }
template <class T> template <class T>
void HIPStream<T>::copy() void HIPStream<T>::copy()
{ {
copy_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_c); copy_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
check_error(); check_error();
hipDeviceSynchronize(); hipDeviceSynchronize();
check_error(); check_error();
@ -143,18 +145,20 @@ void HIPStream<T>::copy()
template <size_t elements_per_lane, typename T> template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE) __launch_bounds__(TBSIZE)
__global__ __global__
void mul_kernel(T * __restrict b, const T * __restrict c) void mul_kernel(T * b, const T * c)
{ {
const T scalar = startScalar; const T scalar = startScalar;
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane; const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
for (size_t j = 0; j < elements_per_lane; ++j) b[i] = scalar * c[i];
b[gidx + j] = scalar * c[gidx + j]; // const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// b[gidx + j] = scalar * c[gidx + j];
} }
template <class T> template <class T>
void HIPStream<T>::mul() void HIPStream<T>::mul()
{ {
mul_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_b, d_c); mul_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
check_error(); check_error();
hipDeviceSynchronize(); hipDeviceSynchronize();
check_error(); check_error();
@ -163,17 +167,19 @@ void HIPStream<T>::mul()
template <size_t elements_per_lane, typename T> template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE) __launch_bounds__(TBSIZE)
__global__ __global__
void add_kernel(const T * __restrict a, const T * __restrict b, T * __restrict c) void add_kernel(const T * a, const T * b, T * c)
{ {
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane; const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
for (size_t j = 0; j < elements_per_lane; ++j) c[i] = a[i] + b[i];
c[gidx + j] = a[gidx + j] + b[gidx + j]; // const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// c[gidx + j] = a[gidx + j] + b[gidx + j];
} }
template <class T> template <class T>
void HIPStream<T>::add() void HIPStream<T>::add()
{ {
add_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c); add_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
check_error(); check_error();
hipDeviceSynchronize(); hipDeviceSynchronize();
check_error(); check_error();
@ -182,18 +188,20 @@ void HIPStream<T>::add()
template <size_t elements_per_lane, typename T> template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE) __launch_bounds__(TBSIZE)
__global__ __global__
void triad_kernel(T * __restrict a, const T * __restrict b, const T * __restrict c) void triad_kernel(T * a, const T * b, const T * c)
{ {
const T scalar = startScalar; const T scalar = startScalar;
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane; const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
for (size_t j = 0; j < elements_per_lane; ++j) a[i] = b[i] + scalar * c[i];
a[gidx + j] = b[gidx + j] + scalar * c[gidx + j]; // const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// a[gidx + j] = b[gidx + j] + scalar * c[gidx + j];
} }
template <class T> template <class T>
void HIPStream<T>::triad() void HIPStream<T>::triad()
{ {
triad_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c); triad_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
check_error(); check_error();
hipDeviceSynchronize(); hipDeviceSynchronize();
check_error(); check_error();
@ -220,7 +228,7 @@ void HIPStream<T>::nstream()
template <size_t elements_per_lane, typename T> template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE) __launch_bounds__(TBSIZE)
__global__ void dot_kernel(const T * __restrict a, const T * __restrict b, T * __restrict sum, int array_size) __global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
{ {
__shared__ T tb_sum[TBSIZE]; __shared__ T tb_sum[TBSIZE];