Pull request for HIP version
This commit is contained in:
parent
71d5813484
commit
fdeb20601f
18
Makefile
18
Makefile
@ -6,7 +6,8 @@ ifeq ($(PLATFORM), Darwin)
|
|||||||
LDLIBS = -framework OpenCL
|
LDLIBS = -framework OpenCL
|
||||||
endif
|
endif
|
||||||
|
|
||||||
all: gpu-stream-ocl gpu-stream-cuda
|
all: gpu-stream-ocl gpu-stream-cuda gpu-stream-hip
|
||||||
|
|
||||||
|
|
||||||
gpu-stream-ocl: ocl-stream.cpp common.o Makefile
|
gpu-stream-ocl: ocl-stream.cpp common.o Makefile
|
||||||
$(CXX) $(CXXFLAGS) -Wno-deprecated-declarations common.o $< -o $@ $(LDLIBS)
|
$(CXX) $(CXXFLAGS) -Wno-deprecated-declarations common.o $< -o $@ $(LDLIBS)
|
||||||
@ -19,9 +20,22 @@ ifeq ($(shell which nvcc > /dev/null; echo $$?), 0)
|
|||||||
else
|
else
|
||||||
$(error "Cannot find nvcc, please install CUDA toolkit")
|
$(error "Cannot find nvcc, please install CUDA toolkit")
|
||||||
endif
|
endif
|
||||||
|
HIP_PATH?=../../..
|
||||||
|
HIPCC=$(HIP_PATH)/bin/hipcc
|
||||||
|
|
||||||
|
hip-stream.o : hip-stream.cpp
|
||||||
|
$(HIPCC) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
|
gpu-stream-hip: hip-stream.o common.o Makefile
|
||||||
|
ifeq ($(shell which $(HIPCC) > /dev/null; echo $$?), 0)
|
||||||
|
$(HIPCC) $(CXXFLAGS) common.o $< -lm -o $@
|
||||||
|
else
|
||||||
|
$(error "Cannot find $(HIPCC), please install HIP toolkit")
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
.PHONY: clean
|
.PHONY: clean
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm -f gpu-stream-ocl gpu-stream-cuda *.o
|
rm -f gpu-stream-ocl gpu-stream-cuda gpu-stream-hip *.o
|
||||||
|
|
||||||
|
|||||||
@ -13,6 +13,13 @@ Build the OpenCL and CUDA binaries with `make` (CUDA version requires CUDA >= v6
|
|||||||
|
|
||||||
Run the OpenCL version with `./gpu-stream-ocl` and the CUDA version with `./gpu-stream-cuda`
|
Run the OpenCL version with `./gpu-stream-ocl` and the CUDA version with `./gpu-stream-cuda`
|
||||||
|
|
||||||
|
For HIP version, follow the instructions on the following blog to properly install ROCK and ROCR drivers:
|
||||||
|
http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/
|
||||||
|
Clone from the HIP repository in the following link:
|
||||||
|
https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP
|
||||||
|
|
||||||
|
Build the HIP binaries with make gpu-stream-hip, run it with './gpu-stream-hip'
|
||||||
|
|
||||||
Android
|
Android
|
||||||
-------
|
-------
|
||||||
|
|
||||||
|
|||||||
398
hip-stream.cpp
Normal file
398
hip-stream.cpp
Normal file
@ -0,0 +1,398 @@
|
|||||||
|
#include "hip_runtime.h"
|
||||||
|
/*=============================================================================
|
||||||
|
*------------------------------------------------------------------------------
|
||||||
|
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||||
|
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||||
|
*------------------------------------------------------------------------------
|
||||||
|
* License:
|
||||||
|
* 1. You are free to use this program and/or to redistribute
|
||||||
|
* this program.
|
||||||
|
* 2. You are free to modify this program for your own use,
|
||||||
|
* including commercial use, subject to the publication
|
||||||
|
* restrictions in item 3.
|
||||||
|
* 3. You are free to publish results obtained from running this
|
||||||
|
* program, or from works that you derive from this program,
|
||||||
|
* with the following limitations:
|
||||||
|
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||||
|
* published results must be in conformance to the GPU-STREAM
|
||||||
|
* Run Rules published at
|
||||||
|
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||||
|
* and incorporated herein by reference.
|
||||||
|
* The copyright holders retain the
|
||||||
|
* right to determine conformity with the Run Rules.
|
||||||
|
* 3b. Results based on modified source code or on runs not in
|
||||||
|
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||||
|
* labelled whenever they are published. Examples of
|
||||||
|
* proper labelling include:
|
||||||
|
* "tuned GPU-STREAM benchmark results"
|
||||||
|
* "based on a variant of the GPU-STREAM benchmark code"
|
||||||
|
* Other comparable, clear and reasonable labelling is
|
||||||
|
* acceptable.
|
||||||
|
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||||
|
* is encouraged, but not required.
|
||||||
|
* 4. Use of this program or creation of derived works based on this
|
||||||
|
* program constitutes acceptance of these licensing restrictions.
|
||||||
|
* 5. Absolutely no warranty is expressed or implied.
|
||||||
|
*———————————————————————————————————-----------------------------------------*/
|
||||||
|
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
#include <fstream>
|
||||||
|
#include <vector>
|
||||||
|
#include <chrono>
|
||||||
|
#include <cfloat>
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
#include <cuda.h>
|
||||||
|
#include "common.h"
|
||||||
|
|
||||||
|
std::string getDeviceName(int device);
|
||||||
|
int getDriver(void);
|
||||||
|
|
||||||
|
// Code to check CUDA errors
|
||||||
|
void check_cuda_error(void)
|
||||||
|
{
|
||||||
|
hipError_t err = hipGetLastError();
|
||||||
|
if (err != hipSuccess)
|
||||||
|
{
|
||||||
|
std::cerr
|
||||||
|
<< "Error: "
|
||||||
|
<< hipGetErrorString(err)
|
||||||
|
<< std::endl;
|
||||||
|
exit(err);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void copy(hipLaunchParm lp, const T * a, T * c)
|
||||||
|
{
|
||||||
|
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||||
|
c[i] = a[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void mul(hipLaunchParm lp, T * b, const T * c)
|
||||||
|
{
|
||||||
|
const T scalar = 3.0;
|
||||||
|
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||||
|
b[i] = scalar * c[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void add(hipLaunchParm lp, const T * a, const T * b, T * c)
|
||||||
|
{
|
||||||
|
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||||
|
c[i] = a[i] + b[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void triad(hipLaunchParm lp, T * a, const T * b, const T * c)
|
||||||
|
{
|
||||||
|
const T scalar = 3.0;
|
||||||
|
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||||
|
a[i] = b[i] + scalar * c[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char *argv[])
|
||||||
|
{
|
||||||
|
|
||||||
|
// Print out run information
|
||||||
|
std::cout
|
||||||
|
<< "GPU-STREAM" << std::endl
|
||||||
|
<< "Version: " << VERSION_STRING << std::endl
|
||||||
|
<< "Implementation: CUDA" << std::endl;
|
||||||
|
|
||||||
|
parseArguments(argc, argv);
|
||||||
|
|
||||||
|
if (NTIMES < 2)
|
||||||
|
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
|
||||||
|
|
||||||
|
std::cout << "Precision: ";
|
||||||
|
if (useFloat) std::cout << "float";
|
||||||
|
else std::cout << "double";
|
||||||
|
std::cout << std::endl << std::endl;
|
||||||
|
|
||||||
|
std::cout << "Running kernels " << NTIMES << " times" << std::endl;
|
||||||
|
|
||||||
|
if (ARRAY_SIZE % 1024 != 0)
|
||||||
|
{
|
||||||
|
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||||
|
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||||
|
std::cout
|
||||||
|
<< "Warning: array size must divide 1024" << std::endl
|
||||||
|
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||||
|
<< " to " << ARRAY_SIZE << std::endl;
|
||||||
|
if (ARRAY_SIZE == 0)
|
||||||
|
throw std::runtime_error("Array size must be >= 1024");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get precision (used to reset later)
|
||||||
|
std::streamsize ss = std::cout.precision();
|
||||||
|
|
||||||
|
size_t DATATYPE_SIZE;
|
||||||
|
|
||||||
|
if (useFloat)
|
||||||
|
{
|
||||||
|
DATATYPE_SIZE = sizeof(float);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
DATATYPE_SIZE = sizeof(double);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Display number of bytes in array
|
||||||
|
std::cout << std::setprecision(1) << std::fixed
|
||||||
|
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||||
|
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << "Total size: " << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||||
|
<< " (=" << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||||
|
<< std::endl;
|
||||||
|
|
||||||
|
// Reset precision
|
||||||
|
std::cout.precision(ss);
|
||||||
|
|
||||||
|
// Check device index is in range
|
||||||
|
int count;
|
||||||
|
hipGetDeviceCount(&count);
|
||||||
|
check_cuda_error();
|
||||||
|
if (deviceIndex >= count)
|
||||||
|
throw std::runtime_error("Chosen device index is invalid");
|
||||||
|
hipSetDevice(deviceIndex);
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
// Print out device name
|
||||||
|
std::cout << "Using CUDA device " << getDeviceName(deviceIndex) << std::endl;
|
||||||
|
|
||||||
|
// Print out device CUDA driver version
|
||||||
|
std::cout << "Driver: " << getDriver() << std::endl;
|
||||||
|
|
||||||
|
// Check buffers fit on the device
|
||||||
|
hipDeviceProp_t props;
|
||||||
|
hipGetDeviceProperties(&props, deviceIndex);
|
||||||
|
if (props.totalGlobalMem < 3*DATATYPE_SIZE*ARRAY_SIZE)
|
||||||
|
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||||
|
|
||||||
|
// Create host vectors
|
||||||
|
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||||
|
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||||
|
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||||
|
|
||||||
|
// Initilise arrays
|
||||||
|
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||||
|
{
|
||||||
|
if (useFloat)
|
||||||
|
{
|
||||||
|
((float*)h_a)[i] = 1.0f;
|
||||||
|
((float*)h_b)[i] = 2.0f;
|
||||||
|
((float*)h_c)[i] = 0.0f;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
((double*)h_a)[i] = 1.0;
|
||||||
|
((double*)h_b)[i] = 2.0;
|
||||||
|
((double*)h_c)[i] = 0.0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create device buffers
|
||||||
|
void * d_a, * d_b, *d_c;
|
||||||
|
hipMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
|
||||||
|
check_cuda_error();
|
||||||
|
hipMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
|
||||||
|
check_cuda_error();
|
||||||
|
hipMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
// Copy host memory to device
|
||||||
|
hipMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||||
|
check_cuda_error();
|
||||||
|
hipMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||||
|
check_cuda_error();
|
||||||
|
hipMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
// Make sure the copies are finished
|
||||||
|
hipDeviceSynchronize();
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
// List of times
|
||||||
|
std::vector< std::vector<double> > timings;
|
||||||
|
|
||||||
|
// Declare timers
|
||||||
|
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||||
|
|
||||||
|
// Main loop
|
||||||
|
for (unsigned int k = 0; k < NTIMES; k++)
|
||||||
|
{
|
||||||
|
std::vector<double> times;
|
||||||
|
t1 = std::chrono::high_resolution_clock::now();
|
||||||
|
if (useFloat)
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(copy), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (float*)d_a, (float*)d_c);
|
||||||
|
else
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(copy), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (double*)d_a, (double*)d_c);
|
||||||
|
check_cuda_error();
|
||||||
|
hipDeviceSynchronize();
|
||||||
|
check_cuda_error();
|
||||||
|
t2 = std::chrono::high_resolution_clock::now();
|
||||||
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||||
|
|
||||||
|
|
||||||
|
t1 = std::chrono::high_resolution_clock::now();
|
||||||
|
if (useFloat)
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(mul), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (float*)d_b, (float*)d_c);
|
||||||
|
else
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(mul), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (double*)d_b, (double*)d_c);
|
||||||
|
check_cuda_error();
|
||||||
|
hipDeviceSynchronize();
|
||||||
|
check_cuda_error();
|
||||||
|
t2 = std::chrono::high_resolution_clock::now();
|
||||||
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||||
|
|
||||||
|
|
||||||
|
t1 = std::chrono::high_resolution_clock::now();
|
||||||
|
if (useFloat)
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(add), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c);
|
||||||
|
else
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(add), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c);
|
||||||
|
check_cuda_error();
|
||||||
|
hipDeviceSynchronize();
|
||||||
|
check_cuda_error();
|
||||||
|
t2 = std::chrono::high_resolution_clock::now();
|
||||||
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||||
|
|
||||||
|
|
||||||
|
t1 = std::chrono::high_resolution_clock::now();
|
||||||
|
if (useFloat)
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(triad), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c);
|
||||||
|
else
|
||||||
|
hipLaunchKernel(HIP_KERNEL_NAME(triad), dim3(ARRAY_SIZE/1024), dim3(1024), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c);
|
||||||
|
check_cuda_error();
|
||||||
|
hipDeviceSynchronize();
|
||||||
|
check_cuda_error();
|
||||||
|
t2 = std::chrono::high_resolution_clock::now();
|
||||||
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||||
|
|
||||||
|
timings.push_back(times);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check solutions
|
||||||
|
hipMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||||
|
check_cuda_error();
|
||||||
|
hipMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||||
|
check_cuda_error();
|
||||||
|
hipMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
if (useFloat)
|
||||||
|
{
|
||||||
|
check_solution<float>(h_a, h_b, h_c);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
check_solution<double>(h_a, h_b, h_c);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Crunch results
|
||||||
|
size_t sizes[4] = {
|
||||||
|
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||||
|
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||||
|
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||||
|
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||||
|
};
|
||||||
|
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||||
|
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||||
|
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||||
|
|
||||||
|
// Ignore first result
|
||||||
|
for (unsigned int i = 1; i < NTIMES; i++)
|
||||||
|
{
|
||||||
|
for (int j = 0; j < 4; j++)
|
||||||
|
{
|
||||||
|
avg[j] += timings[i][j];
|
||||||
|
min[j] = std::min(min[j], timings[i][j]);
|
||||||
|
max[j] = std::max(max[j], timings[i][j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int j = 0; j < 4; j++)
|
||||||
|
avg[j] /= (double)(NTIMES-1);
|
||||||
|
|
||||||
|
// Display results
|
||||||
|
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||||
|
std::cout
|
||||||
|
<< std::left << std::setw(12) << "Function"
|
||||||
|
<< std::left << std::setw(12) << "MBytes/sec"
|
||||||
|
<< std::left << std::setw(12) << "Min (sec)"
|
||||||
|
<< std::left << std::setw(12) << "Max"
|
||||||
|
<< std::left << std::setw(12) << "Average"
|
||||||
|
<< std::endl;
|
||||||
|
|
||||||
|
for (int j = 0; j < 4; j++)
|
||||||
|
{
|
||||||
|
std::cout
|
||||||
|
<< std::left << std::setw(12) << labels[j]
|
||||||
|
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||||
|
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||||
|
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||||
|
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||||
|
<< std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Free host vectors
|
||||||
|
free(h_a);
|
||||||
|
free(h_b);
|
||||||
|
free(h_c);
|
||||||
|
|
||||||
|
// Free cuda buffers
|
||||||
|
hipFree(d_a);
|
||||||
|
check_cuda_error();
|
||||||
|
hipFree(d_b);
|
||||||
|
check_cuda_error();
|
||||||
|
hipFree(d_c);
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string getDeviceName(int device)
|
||||||
|
{
|
||||||
|
struct hipDeviceProp_t prop;
|
||||||
|
hipGetDeviceProperties(&prop, device);
|
||||||
|
check_cuda_error();
|
||||||
|
return std::string(prop.name);
|
||||||
|
}
|
||||||
|
|
||||||
|
int getDriver(void)
|
||||||
|
{
|
||||||
|
int driver;
|
||||||
|
hipDriverGetVersion(&driver);
|
||||||
|
check_cuda_error();
|
||||||
|
return driver;
|
||||||
|
}
|
||||||
|
|
||||||
|
void listDevices(void)
|
||||||
|
{
|
||||||
|
// Get number of devices
|
||||||
|
int count;
|
||||||
|
hipGetDeviceCount(&count);
|
||||||
|
check_cuda_error();
|
||||||
|
|
||||||
|
// Print device names
|
||||||
|
if (count == 0)
|
||||||
|
{
|
||||||
|
std::cout << "No devices found." << std::endl;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
std::cout << std::endl;
|
||||||
|
std::cout << "Devices:" << std::endl;
|
||||||
|
for (int i = 0; i < count; i++)
|
||||||
|
{
|
||||||
|
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||||
|
check_cuda_error();
|
||||||
|
}
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
15
results/cuda/nvidia-gtx-titan_x.txt
Normal file
15
results/cuda/nvidia-gtx-titan_x.txt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
GPU-STREAM
|
||||||
|
Version: 1.0
|
||||||
|
Implementation: CUDA
|
||||||
|
Precision: double
|
||||||
|
|
||||||
|
Running kernels 10 times
|
||||||
|
Array size: 400.0 MB (=0.4 GB)
|
||||||
|
Total size: 1200.0 MB (=1.2 GB)
|
||||||
|
Using CUDA device GeForce GTX TITAN X
|
||||||
|
Driver: 7050
|
||||||
|
Function MBytes/sec Min (sec) Max Average
|
||||||
|
Copy 263155.587 0.00319 0.00319 0.00319
|
||||||
|
Mul 262943.430 0.00319 0.00319 0.00319
|
||||||
|
Add 268710.444 0.00468 0.00469 0.00469
|
||||||
|
Triad 268957.305 0.00468 0.00469 0.00468
|
||||||
15
results/hip/amd-fiji-nano.txt
Normal file
15
results/hip/amd-fiji-nano.txt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
GPU-STREAM
|
||||||
|
Version: 1.0
|
||||||
|
Implementation: CUDA
|
||||||
|
Precision: double
|
||||||
|
|
||||||
|
Running kernels 10 times
|
||||||
|
Array size: 400.0 MB (=0.4 GB)
|
||||||
|
Total size: 1200.0 MB (=1.2 GB)
|
||||||
|
Using CUDA device Fiji
|
||||||
|
Driver: 4
|
||||||
|
Function MBytes/sec Min (sec) Max Average
|
||||||
|
Copy 375822.410 0.00223 0.00225 0.00224
|
||||||
|
Mul 375086.879 0.00224 0.00227 0.00224
|
||||||
|
Add 425650.718 0.00296 0.00298 0.00297
|
||||||
|
Triad 424710.113 0.00296 0.00298 0.00298
|
||||||
22
results/hip/nvidia-gtx-titan_x.txt
Normal file
22
results/hip/nvidia-gtx-titan_x.txt
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
GPU-STREAM
|
||||||
|
Version: 1.0
|
||||||
|
Implementation: HIP
|
||||||
|
GridSize: 52428800 work-items
|
||||||
|
GroupSize: 1024 work-items
|
||||||
|
Operations/Work-item: 1
|
||||||
|
Precision: double
|
||||||
|
|
||||||
|
Running kernels 10 times
|
||||||
|
Array size: 400.0 MB (=0.4 GB) 0 bytes padding
|
||||||
|
Total size: 1200.0 MB (=1.2 GB)
|
||||||
|
Using HIP device GeForce GTX TITAN X (compute_units=24)
|
||||||
|
Driver: 4
|
||||||
|
d_a=0x1306d80000
|
||||||
|
d_b=0x131fd80000
|
||||||
|
d_c=0x1338d80000
|
||||||
|
Function MBytes/sec Min (sec) Max Average
|
||||||
|
Copy 263042.207 0.00319 0.00320 0.00319
|
||||||
|
Mul 262972.033 0.00319 0.00320 0.00319
|
||||||
|
Add 268732.653 0.00468 0.00469 0.00469
|
||||||
|
Triad 268706.197 0.00468 0.00469 0.00469
|
||||||
|
GEOMEAN 265847.929
|
||||||
Loading…
Reference in New Issue
Block a user