// Copyright (c) 2015-16 Peter Steinbach, MPI CBG Scientific Computing Facility // // For full license terms please see the LICENSE file distributed with this // source code #include #include #include #include #include "HCStream.h" #define TBSIZE 1024 std::string getDeviceName(const hc::accelerator& _acc) { std::wstring_convert, wchar_t> converter; std::string value = converter.to_bytes(_acc.get_description()); return value; } void listDevices(void) { // Get number of devices std::vector accs = hc::accelerator::get_all(); // Print device names if (accs.empty()) { std::cerr << "No devices found." << std::endl; } else { std::cout << std::endl; std::cout << "Devices:" << std::endl; for (int i = 0; i < accs.size(); i++) { std::cout << i << ": " << getDeviceName(accs[i]) << std::endl; } std::cout << std::endl; } } template HCStream::HCStream(const unsigned int ARRAY_SIZE, const int device_index): array_size(ARRAY_SIZE), d_a(ARRAY_SIZE), d_b(ARRAY_SIZE), d_c(ARRAY_SIZE) { // The array size must be divisible by TBSIZE for kernel launches if (ARRAY_SIZE % TBSIZE != 0) { std::stringstream ss; ss << "Array size must be a multiple of " << TBSIZE; throw std::runtime_error(ss.str()); } // // Set device std::vector accs = hc::accelerator::get_all(); auto current = accs[device_index]; hc::accelerator::set_default(current.get_device_path()); std::cout << "Using HC device " << getDeviceName(current) << std::endl; } template HCStream::~HCStream() { } template void HCStream::init_arrays(T _a, T _b, T _c) { std::vector temp(array_size,_a); hc::copy(temp.begin(), temp.end(),this->d_a); std::fill(temp.begin(), temp.end(),_b); hc::copy(temp.begin(), temp.end(),this->d_b); std::fill(temp.begin(), temp.end(),_c); hc::copy(temp.begin(), temp.end(),this->d_c); } template void HCStream::read_arrays(std::vector& a, std::vector& b, std::vector& c) { // Copy device memory to host hc::copy(d_a,a.begin()); hc::copy(d_b,b.begin()); hc::copy(d_c,c.begin()); } template void HCStream::copy() { hc::array& device_a = this->d_a; hc::array& device_c = this->d_c; try{ // launch a GPU kernel to compute the saxpy in parallel hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size) , [&](hc::index<1> index) [[hc]] { device_c[index] = device_a[index]; }); future_kernel.wait(); } catch(std::exception& e){ std::cout << __FILE__ << ":" << __LINE__ << "\t" << e.what() << std::endl; throw; } } template void HCStream::mul() { const T scalar = 0.3; hc::array& device_b = this->d_b; hc::array& device_c = this->d_c; try{ // launch a GPU kernel to compute the saxpy in parallel hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size) , [&](hc::index<1> i) [[hc]] { device_b[i] = scalar*device_c[i]; }); future_kernel.wait(); } catch(std::exception& e){ std::cout << __FILE__ << ":" << __LINE__ << "\t" << e.what() << std::endl; throw; } } template void HCStream::add() { hc::array& device_a = this->d_a; hc::array& device_b = this->d_b; hc::array& device_c = this->d_c; try{ // launch a GPU kernel to compute the saxpy in parallel hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size) , [&](hc::index<1> i) [[hc]] { device_c[i] = device_a[i]+device_b[i]; }); future_kernel.wait(); } catch(std::exception& e){ std::cout << __FILE__ << ":" << __LINE__ << "\t" << e.what() << std::endl; throw; } } template void HCStream::triad() { const T scalar = 0.3; hc::array& device_a = this->d_a; hc::array& device_b = this->d_b; hc::array& device_c = this->d_c; try{ // launch a GPU kernel to compute the saxpy in parallel hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size) , [&](hc::index<1> i) [[hc]] { device_a[i] = device_b[i] + scalar*device_c[i]; }); future_kernel.wait(); } catch(std::exception& e){ std::cout << __FILE__ << ":" << __LINE__ << "\t" << e.what() << std::endl; throw; } } template T HCStream::dot() { hc::array& device_a = this->d_a; hc::array product = this->d_b; T sum = static_cast(0); try{ // launch a GPU kernel to compute the saxpy in parallel hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size) , [&](hc::index<1> i) [[hc]] { product[i] *= device_a[i]; }); future_kernel.wait(); } catch(std::exception& e){ std::cout << __FILE__ << ":" << __LINE__ << "\t" << e.what() << std::endl; throw; } std::vector h_product(array_size,sum); hc::copy(product,h_product.begin()); sum = std::accumulate(h_product.begin(), h_product.end(),sum); return sum; } template class HCStream; template class HCStream;