#include #include #include #include #include #include #include #include #define DATATYPE double unsigned int ARRAY_SIZE = 50000000; unsigned int NTIMES = 10; #define MIN(a,b) ((a) < (b)) ? (a) : (b) #define MAX(a,b) ((a) > (b)) ? (a) : (b) #define VERSION_STRING "0.0" void parseArguments(int argc, char *argv[]); std::string getDeviceName(); struct badtype : public std::exception { virtual const char * what () const throw () { return "Datatype is not 4 or 8"; } }; struct invaliddevice : public std::exception { virtual const char * what () const throw () { return "Chosen device index is invalid"; } }; struct badntimes : public std::exception { virtual const char * what () const throw () { return "Chosen number of times is invalid, must be >= 2"; } }; size_t sizes[4] = { 2 * sizeof(DATATYPE) * ARRAY_SIZE, 2 * sizeof(DATATYPE) * ARRAY_SIZE, 3 * sizeof(DATATYPE) * ARRAY_SIZE, 3 * sizeof(DATATYPE) * ARRAY_SIZE }; void check_solution(DATATYPE * a, DATATYPE * b, DATATYPE * c) { // Generate correct solution DATATYPE golda = 1.0; DATATYPE goldb = 2.0; DATATYPE goldc = 0.0; const DATATYPE scalar = 3.0; for (unsigned int i = 0; i < NTIMES; i++) { goldc = golda; goldb = scalar * goldc; goldc = golda + goldb; golda = goldb + scalar * goldc; } // Calculate average error double erra = 0.0; double errb = 0.0; double errc = 0.0; for (unsigned int i = 0; i < ARRAY_SIZE; i++) { erra += fabs(a[i] - golda); errb += fabs(b[i] - goldb); errc += fabs(c[i] - goldc); } erra /= (double)ARRAY_SIZE; errb /= (double)ARRAY_SIZE; errc /= (double)ARRAY_SIZE; double epsi; if (sizeof(DATATYPE) == 4) epsi = 1.0E-6; else if (sizeof(DATATYPE) == 8) epsi = 1.0E-13; else throw badtype(); if (erra > epsi) std::cout << "Validation failed on a[]. Average error " << erra << std::endl; if (errb > epsi) std::cout << "Validation failed on b[]. Average error " << errb << std::endl; if (errc > epsi) std::cout << "Validation failed on c[]. Average error " << errc << std::endl; } const DATATYPE scalar = 3.0; __global__ void copy(const DATATYPE * a, DATATYPE * c) { const int i = blockDim.x * blockIdx.x + threadIdx.x; c[i] = a[i]; } __global__ void mul(DATATYPE * b, const DATATYPE * c) { const int i = blockDim.x * blockIdx.x + threadIdx.x; b[i] = scalar * c[i]; } __global__ void add(const DATATYPE * a, const DATATYPE * b, DATATYPE * c) { const int i = blockDim.x * blockIdx.x + threadIdx.x; c[i] = a[i] + b[i]; } __global__ void triad(DATATYPE * a, const DATATYPE * b, const DATATYPE * c) { const int i = blockDim.x * blockIdx.x + threadIdx.x; a[i] = b[i] + scalar * c[i]; } int deviceIndex = 0; int main(int argc, char *argv[]) { // Print out run information std::cout << "GPU-STREAM" << std::endl << "Version: " << VERSION_STRING << std::endl << "Implementation: CUDA" << std::endl << std::endl; if (ARRAY_SIZE % 1024 != 0) { unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE; ARRAY_SIZE -= ARRAY_SIZE % 1024; std::cout << "Warning: array size must divide 1024" << std::endl << "Resizing array from " << OLD_ARRAY_SIZE << " to " << ARRAY_SIZE << std::endl; } try { parseArguments(argc, argv); if (NTIMES < 2) throw badntimes(); // Check device index is in range int count; cudaGetDeviceCount(&count); if (deviceIndex >= count) throw invaliddevice(); cudaSetDevice(deviceIndex); // Print out device name std::cout << "Using CUDA device " << getDeviceName() << std::endl; // Create host vectors DATATYPE * h_a = (DATATYPE *) malloc(ARRAY_SIZE*sizeof(DATATYPE)); DATATYPE * h_b = (DATATYPE *) malloc(ARRAY_SIZE*sizeof(DATATYPE)); DATATYPE * h_c = (DATATYPE *) malloc(ARRAY_SIZE*sizeof(DATATYPE)); // Initilise host vectors for (unsigned int i = 0; i < ARRAY_SIZE; i++) { h_a[i] = 1.0; h_b[i] = 2.0; h_c[i] = 0.0; } // Create device buffers DATATYPE * d_a, * d_b, *d_c; cudaMalloc(&d_a, ARRAY_SIZE*sizeof(DATATYPE)); cudaMalloc(&d_b, ARRAY_SIZE*sizeof(DATATYPE)); cudaMalloc(&d_c, ARRAY_SIZE*sizeof(DATATYPE)); // Copy host memory to device cudaMemcpy(d_a, h_a, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyHostToDevice); cudaMemcpy(d_b, h_b, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyHostToDevice); cudaMemcpy(d_c, h_c, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyHostToDevice); // Make sure the copies are finished cudaDeviceSynchronize(); // List of times std::vector< std::vector > timings; // Declare timers std::chrono::high_resolution_clock::time_point t1, t2; // Main loop for (unsigned int k = 0; k < NTIMES; k++) { std::vector times; t1 = std::chrono::high_resolution_clock::now(); copy<<>>(d_a, d_c); cudaDeviceSynchronize(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); mul<<>>(d_b, d_c); cudaDeviceSynchronize(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); add<<>>(d_a, d_b, d_c); cudaDeviceSynchronize(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); triad<<>>(d_a, d_b, d_c); cudaDeviceSynchronize(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); timings.push_back(times); } // Check solutions cudaMemcpy(h_a, d_a, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyDeviceToHost); cudaMemcpy(h_b, d_b, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyDeviceToHost); cudaMemcpy(h_c, d_c, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyDeviceToHost); check_solution(h_a, h_b, h_c); // Crunch results double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX}; double max[4] = {0.0, 0.0, 0.0, 0.0}; double avg[4] = {0.0, 0.0, 0.0, 0.0}; // Ignore first result for (unsigned int i = 1; i < NTIMES; i++) { for (int j = 0; j < 4; j++) { avg[j] += timings[i][j]; min[j] = MIN(min[j], timings[i][j]); max[j] = MAX(max[j], timings[i][j]); } } for (int j = 0; j < 4; j++) avg[j] /= (double)(NTIMES-1); // Display results std::string labels[] = {"Copy", "Mul", "Add", "Triad"}; std::cout << std::left << std::setw(12) << "Function" << std::left << std::setw(12) << "MBytes/sec" << std::left << std::setw(12) << "Min (sec)" << std::left << std::setw(12) << "Max" << std::left << std::setw(12) << "Average" << std::endl; for (int j = 0; j < 4; j++) { std::cout << std::left << std::setw(12) << labels[j] << std::left << std::setw(12) << 1.0E-06 * sizes[j]/min[j] << std::left << std::setw(12) << min[j] << std::left << std::setw(12) << max[j] << std::left << std::setw(12) << avg[j] << std::endl; } } catch (std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; } } std::string getDeviceName() { int device; cudaGetDevice(&device); struct cudaDeviceProp prop; cudaGetDeviceProperties(&prop, device); return std::string(prop.name); } int parseUInt(const char *str, unsigned int *output) { char *next; *output = strtoul(str, &next, 10); return !strlen(next); } int parseInt(const char *str, int *output) { char *next; *output = strtol(str, &next, 10); return !strlen(next); } void parseArguments(int argc, char *argv[]) { for (int i = 1; i < argc; i++) { if (!strcmp(argv[i], "--list")) { // Get number of devices int count; cudaGetDeviceCount(&count); // Print device names if (count == 0) { std::cout << "No devices found." << std::endl; } else { std::cout << std::endl; std::cout << "Devices:" << std::endl; for (int i = 0; i < count; i++) { cudaSetDevice(i); std::cout << i << ": " << getDeviceName() << std::endl; } std::cout << std::endl; } exit(0); } else if (!strcmp(argv[i], "--device")) { if (++i >= argc || !parseInt(argv[i], &deviceIndex)) { std::cout << "Invalid device index" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s")) { if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE)) { std::cout << "Invalid array size" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--numtimes") || !strcmp(argv[i], "-n")) { if (++i >= argc || !parseUInt(argv[i], &NTIMES)) { std::cout << "Invalid number of times" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h")) { std::cout << std::endl; std::cout << "Usage: ./gpu-stream-ocl [OPTIONS]" << std::endl << std::endl; std::cout << "Options:" << std::endl; std::cout << " -h --help Print the message" << std::endl; std::cout << " --list List available devices" << std::endl; std::cout << " --device INDEX Select device at INDEX" << std::endl; std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl; std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl; std::cout << std::endl; exit(0); } else { std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')" << std::endl; exit(1); } } }