#include #include #include #include #include #include #include #define __CL_ENABLE_EXCEPTIONS #include "cl.hpp" unsigned int ARRAY_SIZE = 50000000; unsigned int NTIMES = 10; size_t DATATYPE_SIZE = sizeof(double); bool useFloat = false; #define MIN(a,b) ((a) < (b)) ? (a) : (b) #define MAX(a,b) ((a) > (b)) ? (a) : (b) #define VERSION_STRING "0.0" void parseArguments(int argc, char *argv[]); std::string getDeviceName(const cl::Device& device); unsigned getDeviceList(std::vector& devices); struct badfile : public std::exception { virtual const char * what () const throw () { return "Cannot open kernel file"; } }; struct invaliddevice : public std::exception { virtual const char * what () const throw () { return "Chosen device index is invalid"; } }; struct badntimes : public std::exception { virtual const char * what () const throw () { return "Chosen number of times is invalid, must be >= 2"; } }; void check_solution(void* a, void* b, void* c) { // Generate correct solution double golda = 1.0; double goldb = 2.0; double goldc = 0.0; float goldaf = 1.0; float goldbf = 2.0; float goldcf = 0.0; const double scalar = 3.0; const float scalarf = 3.0; for (unsigned int i = 0; i < NTIMES; i++) { // Double goldc = golda; goldb = scalar * goldc; goldc = golda + goldb; golda = goldb + scalar * goldc; // Float goldcf = goldaf; goldbf = scalarf * goldcf; goldcf = goldaf + goldbf; goldaf = goldbf + scalarf * goldcf; } // Calculate average error double erra = 0.0; double errb = 0.0; double errc = 0.0; for (unsigned int i = 0; i < ARRAY_SIZE; i++) { if (useFloat) { erra += fabsf(((float*)a)[i] - goldaf); errb += fabsf(((float*)b)[i] - goldbf); errc += fabsf(((float*)c)[i] - goldcf); } else { erra += fabs(((double*)a)[i] - (double)golda); errb += fabs(((double*)b)[i] - (double)goldb); errc += fabs(((double*)c)[i] - (double)goldc); } } erra /= (double)ARRAY_SIZE; errb /= (double)ARRAY_SIZE; errc /= (double)ARRAY_SIZE; double epsi; if (useFloat) epsi = 1.0E-6; else epsi = 1.0E-13; if (erra > epsi) std::cout << "Validation failed on a[]. Average error " << erra << std::endl; if (errb > epsi) std::cout << "Validation failed on b[]. Average error " << errb << std::endl; if (errc > epsi) std::cout << "Validation failed on c[]. Average error " << errc << std::endl; } cl_uint deviceIndex = 0; int main(int argc, char *argv[]) { // Print out run information std::cout << "GPU-STREAM" << std::endl << "Version: " << VERSION_STRING << std::endl << "Implementation: OpenCL" << std::endl; try { parseArguments(argc, argv); if (NTIMES < 2) throw badntimes(); std::cout << "Precision: "; if (useFloat) std::cout << "float"; else std::cout << "double"; std::cout << std::endl << std::endl; // Open the Kernel source std::ifstream in("ocl-stream-kernels.cl"); if (!in.is_open()) throw badfile(); std::string kernels(std::istreambuf_iterator(in), (std::istreambuf_iterator())); // Setup OpenCL // Get list of devices std::vector devices; getDeviceList(devices); // Check device index is in range if (deviceIndex >= devices.size()) throw invaliddevice(); cl::Device device = devices[deviceIndex]; cl::Context context(device); cl::CommandQueue queue(context); cl::Program program(context, kernels); // Print out device name std::string name = getDeviceName(device); std::cout << "Using OpenCL device " << name << std::endl; try { std::string options = ""; if (useFloat) options = "-DFLOAT"; program.build(options.c_str()); } catch (cl::Error& e) { std::vector devices = context.getInfo(); std::string buildlog = program.getBuildInfo(devices[0]); std::cerr << "Build error:" << buildlog << std::endl; throw e; } cl::make_kernel copy(program, "copy"); cl::make_kernel mul(program, "mul"); cl::make_kernel add(program, "add"); cl::make_kernel triad(program, "triad"); // Create host vectors void *h_a = malloc(ARRAY_SIZE * DATATYPE_SIZE); void *h_b = malloc(ARRAY_SIZE * DATATYPE_SIZE); void *h_c = malloc(ARRAY_SIZE * DATATYPE_SIZE); // Initilise arrays for (unsigned int i = 0; i < ARRAY_SIZE; i++) { if (useFloat) { ((float*)h_a)[i] = 1.0; ((float*)h_b)[i] = 2.0; ((float*)h_c)[i] = 0.0; } else { ((double*)h_a)[i] = 1.0; ((double*)h_b)[i] = 2.0; ((double*)h_c)[i] = 0.0; } } // Create device buffers cl::Buffer d_a(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE); cl::Buffer d_b(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE); cl::Buffer d_c(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE); // Copy host memory to device queue.enqueueWriteBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a); queue.enqueueWriteBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b); queue.enqueueWriteBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c); // Make sure the copies are finished queue.finish(); // List of times std::vector< std::vector > timings; // Declare timers std::chrono::high_resolution_clock::time_point t1, t2; // Main loop for (unsigned int k = 0; k < NTIMES; k++) { std::vector times; t1 = std::chrono::high_resolution_clock::now(); copy( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); mul( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); add( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); triad( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); timings.push_back(times); } // Check solutions queue.enqueueReadBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a); queue.enqueueReadBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b); queue.enqueueReadBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c); queue.finish(); check_solution(h_a, h_b, h_c); // Crunch results size_t sizes[4] = { 2 * DATATYPE_SIZE * ARRAY_SIZE, 2 * DATATYPE_SIZE * ARRAY_SIZE, 3 * DATATYPE_SIZE * ARRAY_SIZE, 3 * DATATYPE_SIZE * ARRAY_SIZE }; double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX}; double max[4] = {0.0, 0.0, 0.0, 0.0}; double avg[4] = {0.0, 0.0, 0.0, 0.0}; // Ignore first result for (unsigned int i = 1; i < NTIMES; i++) { for (int j = 0; j < 4; j++) { avg[j] += timings[i][j]; min[j] = MIN(min[j], timings[i][j]); max[j] = MAX(max[j], timings[i][j]); } } for (int j = 0; j < 4; j++) avg[j] /= (double)(NTIMES-1); // Display results std::string labels[] = {"Copy", "Mul", "Add", "Triad"}; std::cout << std::left << std::setw(12) << "Function" << std::left << std::setw(12) << "MBytes/sec" << std::left << std::setw(12) << "Min (sec)" << std::left << std::setw(12) << "Max" << std::left << std::setw(12) << "Average" << std::endl; for (int j = 0; j < 4; j++) { std::cout << std::left << std::setw(12) << labels[j] << std::left << std::setw(12) << 1.0E-06 * sizes[j]/min[j] << std::left << std::setw(12) << min[j] << std::left << std::setw(12) << max[j] << std::left << std::setw(12) << avg[j] << std::endl; } } // Catch OpenCL Errors and display information catch (cl::Error& e) { std::cerr << "Error: " << e.what() << "(" << e.err() << ")" << std::endl; } catch (std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; } } unsigned getDeviceList(std::vector& devices) { // Get list of platforms std::vector platforms; cl::Platform::get(&platforms); // Enumerate devices for (unsigned int i = 0; i < platforms.size(); i++) { std::vector plat_devices; platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices); devices.insert(devices.end(), plat_devices.begin(), plat_devices.end()); } return devices.size(); } std::string getDeviceName(const cl::Device& device) { std::string name; cl_device_info info = CL_DEVICE_NAME; // Special case for AMD #ifdef CL_DEVICE_BOARD_NAME_AMD device.getInfo(CL_DEVICE_VENDOR, &name); if (strstr(name.c_str(), "Advanced Micro Devices")) info = CL_DEVICE_BOARD_NAME_AMD; #endif device.getInfo(info, &name); return name; } int parseUInt(const char *str, cl_uint *output) { char *next; *output = strtoul(str, &next, 10); return !strlen(next); } void parseArguments(int argc, char *argv[]) { for (int i = 1; i < argc; i++) { if (!strcmp(argv[i], "--list")) { // Get list of devices std::vector devices; getDeviceList(devices); // Print device names if (devices.size() == 0) { std::cout << "No devices found." << std::endl; } else { std::cout << std::endl; std::cout << "Devices:" << std::endl; for (unsigned i = 0; i < devices.size(); i++) { std::cout << i << ": " << getDeviceName(devices[i]) << std::endl; } std::cout << std::endl; } exit(0); } else if (!strcmp(argv[i], "--device")) { if (++i >= argc || !parseUInt(argv[i], &deviceIndex)) { std::cout << "Invalid device index" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s")) { if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE)) { std::cout << "Invalid array size" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--numtimes") || !strcmp(argv[i], "-n")) { if (++i >= argc || !parseUInt(argv[i], &NTIMES)) { std::cout << "Invalid number of times" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--float")) { useFloat = true; DATATYPE_SIZE = sizeof(float); } else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h")) { std::cout << std::endl; std::cout << "Usage: ./gpu-stream-ocl [OPTIONS]" << std::endl << std::endl; std::cout << "Options:" << std::endl; std::cout << " -h --help Print the message" << std::endl; std::cout << " --list List available devices" << std::endl; std::cout << " --device INDEX Select device at INDEX" << std::endl; std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl; std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl; std::cout << " --float Use floats (rather than doubles)" << std::endl; std::cout << std::endl; exit(0); } else { std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')" << std::endl; exit(1); } } }