#include #include #include #include #include #include #include #include #define DATATYPE double unsigned int ARRAY_SIZE = 50000000; #define NTIMES 10 #define MIN(a,b) ((a) < (b)) ? (a) : (b) #define MAX(a,b) ((a) > (b)) ? (a) : (b) #define VERSION_STRING "0.0" void parseArguments(int argc, char *argv[]); std::string getDeviceName(); struct badtype : public std::exception { virtual const char * what () const throw () { return "Datatype is not 4 or 8"; } }; size_t sizes[4] = { 2 * sizeof(DATATYPE) * ARRAY_SIZE, 2 * sizeof(DATATYPE) * ARRAY_SIZE, 3 * sizeof(DATATYPE) * ARRAY_SIZE, 3 * sizeof(DATATYPE) * ARRAY_SIZE }; void check_solution(std::vector& a, std::vector& b, std::vector& c) { // Generate correct solution DATATYPE golda = 1.0; DATATYPE goldb = 2.0; DATATYPE goldc = 0.0; const DATATYPE scalar = 3.0; for (unsigned int i = 0; i < NTIMES; i++) { goldc = golda; goldb = scalar * goldc; goldc = golda + goldb; golda = goldb + scalar * goldc; } // Calculate average error double erra = 0.0; double errb = 0.0; double errc = 0.0; for (unsigned int i = 0; i < ARRAY_SIZE; i++) { erra += fabs(a[i] - golda); errb += fabs(b[i] - goldb); errc += fabs(c[i] - goldc); } erra /= (double)ARRAY_SIZE; errb /= (double)ARRAY_SIZE; errc /= (double)ARRAY_SIZE; double epsi; if (sizeof(DATATYPE) == 4) epsi = 1.0E-6; else if (sizeof(DATATYPE) == 8) epsi = 1.0E-13; else throw badtype(); if (erra > epsi) std::cout << "Validation failed on a[]. Average error " << erra << std::endl; if (errb > epsi) std::cout << "Validation failed on b[]. Average error " << errb << std::endl; if (errc > epsi) std::cout << "Validation failed on c[]. Average error " << errc << std::endl; } const DATATYPE scalar = 3.0; // __global__ void copy(const DATATYPE * restrict a, DATATYPE * restrict c) // { // const int i = blockDim.x * blockIdx.x + threadIdx.x; // c[i] = a[i]; // } // __global__ void mul(DATATYPE * restrict b, const DATATYPE * restrict c) // { // const int i = blockDim.x * blockIdx.x + threadIdx.x; // b[i] = scalar * c[i]; // } // __global__ void add(const DATATYPE * restrict a, const DATATYPE * restrict b, DATATYPE * restrict c) // { // const int i = blockDim.x * blockIdx.x + threadIdx.x; // c[i] = a[i] + b[i]; // } // __global__ void triad(DATATYPE * restrict a, const DATATYPE * restrict b, const DATATYPE * restrict c) // { // const int i = blockDim.x * blockIdx.x + threadIdx.x; // a[i] = b[i] + scalar * c[i]; // } int deviceIndex = 0; int main(int argc, char *argv[]) { // Print out run information std::cout << "GPU-STREAM" << std::endl << "Version: " << VERSION_STRING << std::endl << "Implementation: CUDA" << std::endl << std::endl; try { parseArguments(argc, argv); // Print out device name std::cout << "Using CUDA device " << getDeviceName() << std::endl; // Create host vectors std::vector h_a(ARRAY_SIZE, 1.0); std::vector h_b(ARRAY_SIZE, 2.0); std::vector h_c(ARRAY_SIZE, 0.0); // Create device buffers // Copy host memory to device // Make sure the copies are finished // List of times std::vector< std::vector > timings; // Declare timers std::chrono::high_resolution_clock::time_point t1, t2; // Main loop for (unsigned int k = 0; k < NTIMES; k++) { /*std::vector times; t1 = std::chrono::high_resolution_clock::now(); copy( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); mul( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); add( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); triad( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); timings.push_back(times);*/ } // Check solutions check_solution(h_a, h_b, h_c); // Crunch results double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX}; double max[4] = {0.0, 0.0, 0.0, 0.0}; double avg[4] = {0.0, 0.0, 0.0, 0.0}; // Ignore first result for (unsigned int i = 1; i < NTIMES; i++) { for (int j = 0; j < 4; j++) { avg[j] += timings[i][j]; min[j] = MIN(min[j], timings[i][j]); max[j] = MAX(max[j], timings[i][j]); } } for (int j = 0; j < 4; j++) avg[j] /= (double)(NTIMES-1); // Display results std::string labels[] = {"Copy", "Mul", "Add", "Triad"}; std::cout << std::left << std::setw(12) << "Function" << std::left << std::setw(12) << "MBytes/sec" << std::left << std::setw(12) << "Min (sec)" << std::left << std::setw(12) << "Max" << std::left << std::setw(12) << "Average" << std::endl; for (int j = 0; j < 4; j++) { std::cout << std::left << std::setw(12) << labels[j] << std::left << std::setw(12) << 1.0E-06 * sizes[j]/min[j] << std::left << std::setw(12) << min[j] << std::left << std::setw(12) << max[j] << std::left << std::setw(12) << avg[j] << std::endl; } } catch (std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; } } unsigned getDeviceList() { // // Enumerate devices // for (unsigned int i = 0; i < platforms.size(); i++) // { // std::vector plat_devices; // platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices); // devices.insert(devices.end(), plat_devices.begin(), plat_devices.end()); // } // return devices.size(); return 0; } std::string getDeviceName() { int device; cudaGetDevice(&device); struct cudaDeviceProp prop; cudaGetDeviceProperties(&prop, device); return std::string(prop.name); } int parseUInt(const char *str, unsigned int *output) { char *next; *output = strtoul(str, &next, 10); return !strlen(next); } int parseInt(const char *str, int *output) { char *next; *output = strtol(str, &next, 10); return !strlen(next); } void parseArguments(int argc, char *argv[]) { for (int i = 1; i < argc; i++) { if (!strcmp(argv[i], "--list")) { // Get list of devices /*std::vector devices; getDeviceList(devices); // Print device names if (devices.size() == 0) { std::cout << "No devices found." << std::endl; } else { std::cout << std::endl; std::cout << "Devices:" << std::endl; for (unsigned i = 0; i < devices.size(); i++) { std::cout << i << ": " << getDeviceName(devices[i]) << std::endl; } std::cout << std::endl; }*/ exit(0); } else if (!strcmp(argv[i], "--device")) { if (++i >= argc || !parseInt(argv[i], &deviceIndex)) { std::cout << "Invalid device index" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s")) { if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE)) { std::cout << "Invalid array size" << std::endl; exit(1); } } else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h")) { std::cout << std::endl; std::cout << "Usage: ./gpu-stream-ocl [OPTIONS]" << std::endl << std::endl; std::cout << "Options:" << std::endl; std::cout << " -h --help Print the message" << std::endl; std::cout << " --list List available devices" << std::endl; std::cout << " --device INDEX Select device at INDEX" << std::endl; std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl; std::cout << std::endl; exit(0); } else { std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')" << std::endl; exit(1); } } }