#include #include #include #include #include #include #define __CL_ENABLE_EXCEPTIONS #include "CL/cl.hpp" #include "common.h" std::string getDeviceName(const cl::Device& device); unsigned getDeviceList(std::vector& devices); struct badfile : public std::exception { virtual const char * what () const throw () { return "Cannot open kernel file"; } }; // Print error and exit void die(std::string msg, cl::Error& e) { std::cerr << "Error: " << msg << ": " << e.what() << "(" << e.err() << ")" << std::endl; exit(e.err()); } int main(int argc, char *argv[]) { // Print out run information std::cout << "GPU-STREAM" << std::endl << "Version: " << VERSION_STRING << std::endl << "Implementation: OpenCL" << std::endl; parseArguments(argc, argv); try { if (NTIMES < 2) throw badntimes(); } catch (std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; exit(EXIT_FAILURE); } std::cout << "Precision: "; if (useFloat) std::cout << "float"; else std::cout << "double"; std::cout << std::endl << std::endl; if (ARRAY_SIZE % 1024 != 0) { unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE; ARRAY_SIZE -= ARRAY_SIZE % 1024; std::cout << "Warning: array size must divide 1024" << std::endl << "Resizing array from " << OLD_ARRAY_SIZE << " to " << ARRAY_SIZE << std::endl; } // Get precision (used to reset later) std::streamsize ss = std::cout.precision(); size_t DATATYPE_SIZE; if (useFloat) { DATATYPE_SIZE = sizeof(float); } else { DATATYPE_SIZE = sizeof(double); } // Display number of bytes in array std::cout << std::setprecision(1) << std::fixed << "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB" << " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)" << std::endl; std::cout << "Total size: " << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB" << " (=" << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)" << std::endl; // Reset precision std::cout.precision(ss); // Open the Kernel source std::string kernels; try { std::ifstream in("ocl-stream-kernels.cl"); if (!in.is_open()) throw badfile(); kernels = std::string (std::istreambuf_iterator(in), (std::istreambuf_iterator())); } catch (std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; exit(EXIT_FAILURE); } // Setup OpenCL // Get list of devices std::vector devices; getDeviceList(devices); // Check device index is in range try { if (deviceIndex >= devices.size()) throw invaliddevice(); } catch (std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; exit(EXIT_FAILURE); } cl::Device device = devices[deviceIndex]; cl::Context context; cl::CommandQueue queue; cl::Program program; try { context = cl::Context(device); } catch (cl::Error& e) { die("Creating context", e); } try { queue = cl::CommandQueue(context); } catch (cl::Error &e) { die("Creating queue", e); } try { program = cl::Program(context, kernels); } catch (cl::Error &e) { die("Creating program", e); } // Print out device name std::string name = getDeviceName(device); std::cout << "Using OpenCL device " << name << std::endl; try { std::string options = ""; if (useFloat) options = "-DFLOAT"; program.build(options.c_str()); } catch (cl::Error& e) { std::vector devices = context.getInfo(); std::string buildlog = program.getBuildInfo(devices[0]); std::cerr << "Build error:" << buildlog << std::endl; exit(e.err()); } cl::make_kernel copy(program, "copy"); cl::make_kernel mul(program, "mul"); cl::make_kernel add(program, "add"); cl::make_kernel triad(program, "triad"); // Create host vectors void *h_a = malloc(ARRAY_SIZE * DATATYPE_SIZE); void *h_b = malloc(ARRAY_SIZE * DATATYPE_SIZE); void *h_c = malloc(ARRAY_SIZE * DATATYPE_SIZE); // Initilise arrays for (unsigned int i = 0; i < ARRAY_SIZE; i++) { if (useFloat) { ((float*)h_a)[i] = 1.0; ((float*)h_b)[i] = 2.0; ((float*)h_c)[i] = 0.0; } else { ((double*)h_a)[i] = 1.0; ((double*)h_b)[i] = 2.0; ((double*)h_c)[i] = 0.0; } } // Create device buffers cl::Buffer d_a, d_b, d_c; try { d_a = cl::Buffer(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE); d_b = cl::Buffer(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE); d_c = cl::Buffer(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE); } catch (cl::Error &e) { die("Creating buffers", e); } // Copy host memory to device try { queue.enqueueWriteBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a); queue.enqueueWriteBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b); queue.enqueueWriteBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c); } catch (cl::Error &e) { die("Copying buffers to device", e); } // Make sure the copies are finished try { queue.finish(); } catch (cl::Error &e) { die("Queue finish", e); } // List of times std::vector< std::vector > timings; // Declare timers std::chrono::high_resolution_clock::time_point t1, t2; // Main loop for (unsigned int k = 0; k < NTIMES; k++) { std::vector times; t1 = std::chrono::high_resolution_clock::now(); copy( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); mul( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); add( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); t1 = std::chrono::high_resolution_clock::now(); triad( cl::EnqueueArgs( queue, cl::NDRange(ARRAY_SIZE)), d_a, d_b, d_c); queue.finish(); t2 = std::chrono::high_resolution_clock::now(); times.push_back(std::chrono::duration_cast >(t2 - t1).count()); timings.push_back(times); } // Check solutions try { queue.enqueueReadBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a); queue.enqueueReadBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b); queue.enqueueReadBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c); queue.finish(); } catch (cl::Error &e) { die("Copying back buffers", e); } if (useFloat) { check_solution(h_a, h_b, h_c); } else { check_solution(h_a, h_b, h_c); } // Crunch results size_t sizes[4] = { 2 * DATATYPE_SIZE * ARRAY_SIZE, 2 * DATATYPE_SIZE * ARRAY_SIZE, 3 * DATATYPE_SIZE * ARRAY_SIZE, 3 * DATATYPE_SIZE * ARRAY_SIZE }; double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX}; double max[4] = {0.0, 0.0, 0.0, 0.0}; double avg[4] = {0.0, 0.0, 0.0, 0.0}; // Ignore first result for (unsigned int i = 1; i < NTIMES; i++) { for (int j = 0; j < 4; j++) { avg[j] += timings[i][j]; min[j] = std::min(min[j], timings[i][j]); max[j] = std::max(max[j], timings[i][j]); } } for (int j = 0; j < 4; j++) avg[j] /= (double)(NTIMES-1); // Display results std::string labels[] = {"Copy", "Mul", "Add", "Triad"}; std::cout << std::left << std::setw(12) << "Function" << std::left << std::setw(12) << "MBytes/sec" << std::left << std::setw(12) << "Min (sec)" << std::left << std::setw(12) << "Max" << std::left << std::setw(12) << "Average" << std::endl; for (int j = 0; j < 4; j++) { std::cout << std::left << std::setw(12) << labels[j] << std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j] << std::left << std::setw(12) << std::setprecision(5) << min[j] << std::left << std::setw(12) << std::setprecision(5) << max[j] << std::left << std::setw(12) << std::setprecision(5) << avg[j] << std::endl; } } unsigned getDeviceList(std::vector& devices) { // Get list of platforms std::vector platforms; try { cl::Platform::get(&platforms); } catch (cl::Error &e) { die("Getting platforms", e); } // Enumerate devices for (unsigned int i = 0; i < platforms.size(); i++) { std::vector plat_devices; try { platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices); } catch (cl::Error &e) { die("Getting devices", e); } devices.insert(devices.end(), plat_devices.begin(), plat_devices.end()); } return devices.size(); } std::string getDeviceName(const cl::Device& device) { std::string name; cl_device_info info = CL_DEVICE_NAME; try { // Special case for AMD #ifdef CL_DEVICE_BOARD_NAME_AMD device.getInfo(CL_DEVICE_VENDOR, &name); if (strstr(name.c_str(), "Advanced Micro Devices")) info = CL_DEVICE_BOARD_NAME_AMD; #endif device.getInfo(info, &name); } catch (cl::Error &e) { die("Getting device name", e); } return name; } void listDevices(void) { // Get list of devices std::vector devices; getDeviceList(devices); // Print device names if (devices.size() == 0) { std::cout << "No devices found." << std::endl; } else { std::cout << std::endl; std::cout << "Devices:" << std::endl; for (unsigned i = 0; i < devices.size(); i++) { std::cout << i << ": " << getDeviceName(devices[i]) << std::endl; } std::cout << std::endl; } }