BabelStream/src/CUDAStream.cu
2016-04-28 23:37:53 +01:00

186 lines
4.0 KiB
Plaintext

#include "CUDAStream.h"
void check_error(void)
{
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
std::cerr << "Error: " << cudaGetErrorString(err) << std::endl;
exit(err);
}
}
template <class T>
CUDAStream<T>::CUDAStream(const unsigned int ARRAY_SIZE)
{
array_size = ARRAY_SIZE;
// Check buffers fit on the device
cudaDeviceProp props;
cudaGetDeviceProperties(&props, 0);
if (props.totalGlobalMem < 3*ARRAY_SIZE*sizeof(T))
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
// Create device buffers
cudaMalloc(&d_a, ARRAY_SIZE*sizeof(T));
check_error();
cudaMalloc(&d_b, ARRAY_SIZE*sizeof(T));
check_error();
cudaMalloc(&d_c, ARRAY_SIZE*sizeof(T));
check_error();
}
template <class T>
CUDAStream<T>::~CUDAStream()
{
cudaFree(d_a);
check_error();
cudaFree(d_b);
check_error();
cudaFree(d_c);
check_error();
}
template <class T>
void CUDAStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
{
// Copy host memory to device
cudaMemcpy(d_a, a.data(), a.size()*sizeof(T), cudaMemcpyHostToDevice);
check_error();
cudaMemcpy(d_b, b.data(), b.size()*sizeof(T), cudaMemcpyHostToDevice);
check_error();
cudaMemcpy(d_c, c.data(), c.size()*sizeof(T), cudaMemcpyHostToDevice);
check_error();
}
template <class T>
void CUDAStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
// Copy device memory to host
cudaMemcpy(a.data(), d_a, a.size()*sizeof(T), cudaMemcpyDeviceToHost);
check_error();
cudaMemcpy(b.data(), d_b, b.size()*sizeof(T), cudaMemcpyDeviceToHost);
check_error();
cudaMemcpy(c.data(), d_c, c.size()*sizeof(T), cudaMemcpyDeviceToHost);
check_error();
}
template <typename T>
__global__ void copy_kernel(const T * a, T * c)
{
const int i = blockDim.x * blockIdx.x + threadIdx.x;
c[i] = a[i];
}
template <class T>
void CUDAStream<T>::copy()
{
copy_kernel<<<array_size/1024, 1024>>>(d_a, d_c);
check_error();
cudaDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void mul_kernel(T * b, const T * c)
{
const T scalar = 3.0;
const int i = blockDim.x * blockIdx.x + threadIdx.x;
b[i] = scalar * c[i];
}
template <class T>
void CUDAStream<T>::mul()
{
mul_kernel<<<array_size/1024, 1024>>>(d_b, d_c);
check_error();
cudaDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void add_kernel(const T * a, const T * b, T * c)
{
const int i = blockDim.x * blockIdx.x + threadIdx.x;
c[i] = a[i] + b[i];
}
template <class T>
void CUDAStream<T>::add()
{
add_kernel<<<array_size/1024, 1024>>>(d_a, d_b, d_c);
check_error();
cudaDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void triad_kernel(T * a, const T * b, const T * c)
{
const T scalar = 3.0;
const int i = blockDim.x * blockIdx.x + threadIdx.x;
a[i] = b[i] + scalar * c[i];
}
template <class T>
void CUDAStream<T>::triad()
{
triad_kernel<<<array_size/1024, 1024>>>(d_a, d_b, d_c);
check_error();
cudaDeviceSynchronize();
check_error();
}
template <class T>
void CUDAStream<T>::listDevices(void)
{
// Get number of devices
int count;
cudaGetDeviceCount(&count);
check_error();
// Print device names
if (count == 0)
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < count; i++)
{
std::cout << i << ": " << getDeviceName(i) << std::endl;
}
std::cout << std::endl;
}
}
template <class T>
std::string CUDAStream<T>::getDeviceName(const int device)
{
cudaDeviceProp props;
cudaGetDeviceProperties(&props, device);
check_error();
return std::string(props.name);
}
template <class T>
std::string CUDAStream<T>::getDeviceDriver(const int device)
{
cudaSetDevice(device);
check_error();
int driver;
cudaDriverGetVersion(&driver);
check_error();
return std::to_string(driver);
}
template class CUDAStream<float>;
template class CUDAStream<double>;