BabelStream/HCStream.cpp
2017-07-31 14:20:59 +02:00

277 lines
7.5 KiB
C++

// Copyright (c) 2017 Peter Steinbach, MPI CBG Scientific Computing Facility
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "HCStream.h"
#include <codecvt>
#include <vector>
#include <locale>
#include <numeric>
//specific sizes were obtained through experimentation using a Fiji R9 Nano with rocm 1.6-115
#ifndef VIRTUALTILESIZE
#define VIRTUALTILESIZE 256
#endif
//specific sizes were obtained through experimentation using a Fiji R9 Nano with rocm 1.6-115
#ifndef NTILES
#define NTILES 2048
#endif
std::string getDeviceName(const hc::accelerator& _acc)
{
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
std::string value = converter.to_bytes(_acc.get_description());
return value;
}
void listDevices(void)
{
// Get number of devices
std::vector<hc::accelerator> accs = hc::accelerator::get_all();
// Print device names
if (accs.empty())
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < accs.size(); i++)
{
std::cout << i << ": " << getDeviceName(accs[i]) << std::endl;
}
std::cout << std::endl;
}
}
template <class T>
HCStream<T>::HCStream(const unsigned int ARRAY_SIZE, const int device_index):
array_size(ARRAY_SIZE),
d_a(ARRAY_SIZE),
d_b(ARRAY_SIZE),
d_c(ARRAY_SIZE)
{
// The array size must be divisible by VIRTUALTILESIZE for kernel launches
if (ARRAY_SIZE % VIRTUALTILESIZE != 0)
{
std::stringstream ss;
ss << "Array size must be a multiple of " << VIRTUALTILESIZE;
throw std::runtime_error(ss.str());
}
// Set device
std::vector<hc::accelerator> accs = hc::accelerator::get_all();
auto current = accs.at(device_index);
hc::accelerator::set_default(current.get_device_path());
std::cout << "Using HC device " << getDeviceName(current) << std::endl;
}
template <class T>
HCStream<T>::~HCStream()
{
}
template <class T>
void HCStream<T>::init_arrays(T _a, T _b, T _c)
{
hc::array_view<T,1> view_a(this->d_a);
hc::array_view<T,1> view_b(this->d_b);
hc::array_view<T,1> view_c(this->d_c);
hc::completion_future future_a= hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> i) [[hc]] {
view_a[i] = _a;
});
hc::completion_future future_b= hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> i) [[hc]] {
view_b[i] = _b;
});
hc::completion_future future_c= hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> i) [[hc]] {
view_c[i] = _c;
});
try{
future_a.wait();
future_b.wait();
future_c.wait();
}
catch(std::exception& e){
std::cerr << __FILE__ << ":" << __LINE__ << "\t HCStream<T>::init_arrays " << e.what() << std::endl;
throw;
}
}
template <class T>
void HCStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
hc::copy(d_a,a.begin());
hc::copy(d_b,b.begin());
hc::copy(d_c,c.begin());
}
template <class T>
void HCStream<T>::copy()
{
hc::array_view<T,1> view_a = this->d_a;
hc::array_view<T,1> view_c = this->d_c;
try{
hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> index) [[hc]] {
view_c[index] = view_a[index];
});
future_kernel.wait();
}
catch(std::exception& e){
std::cerr << __FILE__ << ":" << __LINE__ << "\t HCStream<T>::copy " << e.what() << std::endl;
throw;
}
}
template <class T>
void HCStream<T>::mul()
{
const T scalar = startScalar;
hc::array_view<T,1> view_b = this->d_b;
hc::array_view<T,1> view_c = this->d_c;
try{
hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> i) [[hc]] {
view_b[i] = scalar*view_c[i];
});
future_kernel.wait();
}
catch(std::exception& e){
std::cerr << __FILE__ << ":" << __LINE__ << "\t HCStream<T>::mul " << e.what() << std::endl;
throw;
}
}
template <class T>
void HCStream<T>::add()
{
hc::array_view<T,1> view_a(this->d_a);
hc::array_view<T,1> view_b(this->d_b);
hc::array_view<T,1> view_c(this->d_c);
try{
hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> i) [[hc]] {
view_c[i] = view_a[i]+view_b[i];
});
future_kernel.wait();
}
catch(std::exception& e){
std::cerr << __FILE__ << ":" << __LINE__ << "\t HCStream<T>::add " << e.what() << std::endl;
throw;
}
}
template <class T>
void HCStream<T>::triad()
{
const T scalar = startScalar;
hc::array_view<T,1> view_a(this->d_a);
hc::array_view<T,1> view_b(this->d_b);
hc::array_view<T,1> view_c(this->d_c);
try{
hc::completion_future future_kernel = hc::parallel_for_each(hc::extent<1>(array_size)
, [=](hc::index<1> i) [[hc]] {
view_a[i] = view_b[i] + scalar*view_c[i];
});
future_kernel.wait();
}
catch(std::exception& e){
std::cerr << __FILE__ << ":" << __LINE__ << "\t HCStream<T>::triad " << e.what() << std::endl;
throw;
}
}
template <class T>
T HCStream<T>::dot()
{
//implementation adapted from
//https://ampbook.codeplex.com/SourceControl/latest
// ->Samples/CaseStudies/Reduction
// ->CascadingReduction.h
const auto& view_a = this->d_a;
const auto& view_b = this->d_b;
auto ex = view_a.get_extent();
const auto tiled_ex = hc::extent<1>(NTILES * VIRTUALTILESIZE).tile(VIRTUALTILESIZE);
const auto domain_sz = tiled_ex.size();
hc::array<T, 1> partial(NTILES);
hc::parallel_for_each(tiled_ex,
[=,
&view_a,
&view_b,
&partial](const hc::tiled_index<1>& tidx) [[hc]] {
auto gidx = tidx.global[0];
T r = T{0}; // Assumes reduction op is addition.
while (gidx < view_a.get_extent().size()) {
r += view_a[gidx] * view_b[gidx];
gidx += domain_sz;
}
tile_static T tileData[VIRTUALTILESIZE];
tileData[tidx.local[0]] = r;
tidx.barrier.wait_with_tile_static_memory_fence();
for (auto h = VIRTUALTILESIZE / 2; h; h /= 2) {
if (tidx.local[0] < h) {
tileData[tidx.local[0]] += tileData[tidx.local[0] + h];
}
tidx.barrier.wait_with_tile_static_memory_fence();
}
if (tidx.global == tidx.tile_origin) partial[tidx.tile] = tileData[0];
});
try {
partial.get_accelerator_view().wait();
}
catch (std::exception& e) {
std::cerr << __FILE__ << ":" << __LINE__ << "\t HCStream<T>::dot " << e.what() << std::endl;
throw;
}
std::vector<T> h_partial(NTILES,0);
hc::copy(partial,h_partial.begin());
T result = std::accumulate(h_partial.begin(), h_partial.end(), 0.);
return result;
}
template class HCStream<float>;
template class HCStream<double>;