BabelStream/OCLStream.cpp

350 lines
8.3 KiB
C++

// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "OCLStream.h"
// Cache list of devices
bool cached = false;
std::vector<cl::Device> devices;
void getDeviceList(void);
std::string kernels{R"CLC(
constant TYPE scalar = startScalar;
kernel void init(
global TYPE * restrict a,
global TYPE * restrict b,
global TYPE * restrict c,
TYPE initA, TYPE initB, TYPE initC)
{
const size_t i = get_global_id(0);
a[i] = initA;
b[i] = initB;
c[i] = initC;
}
kernel void copy(
global const TYPE * restrict a,
global TYPE * restrict c)
{
const size_t i = get_global_id(0);
c[i] = a[i];
}
kernel void mul(
global TYPE * restrict b,
global const TYPE * restrict c)
{
const size_t i = get_global_id(0);
b[i] = scalar * c[i];
}
kernel void add(
global const TYPE * restrict a,
global const TYPE * restrict b,
global TYPE * restrict c)
{
const size_t i = get_global_id(0);
c[i] = a[i] + b[i];
}
kernel void triad(
global TYPE * restrict a,
global const TYPE * restrict b,
global const TYPE * restrict c)
{
const size_t i = get_global_id(0);
a[i] = b[i] + scalar * c[i];
}
kernel void stream_dot(
global const TYPE * restrict a,
global const TYPE * restrict b,
global TYPE * restrict sum,
local TYPE * restrict wg_sum,
int array_size)
{
size_t i = get_global_id(0);
const size_t local_i = get_local_id(0);
wg_sum[local_i] = 0.0;
for (; i < array_size; i += get_global_size(0))
wg_sum[local_i] += a[i] * b[i];
for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2)
{
barrier(CLK_LOCAL_MEM_FENCE);
if (local_i < offset)
{
wg_sum[local_i] += wg_sum[local_i+offset];
}
}
if (local_i == 0)
sum[get_group_id(0)] = wg_sum[local_i];
}
)CLC"};
template <class T>
OCLStream<T>::OCLStream(const int ARRAY_SIZE, const int device_index)
{
if (!cached)
getDeviceList();
// Setup default OpenCL GPU
if (device_index >= devices.size())
throw std::runtime_error("Invalid device index");
device = devices[device_index];
// Determine sensible dot kernel NDRange configuration
if (device.getInfo<CL_DEVICE_TYPE>() & CL_DEVICE_TYPE_CPU)
{
dot_num_groups = device.getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>();
dot_wgsize = device.getInfo<CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE>() * 2;
}
else
{
dot_num_groups = device.getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>() * 4;
dot_wgsize = device.getInfo<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
}
// Print out device information
std::cout << "Using OpenCL device " << getDeviceName(device_index) << std::endl;
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
std::cout << "Reduction kernel config: " << dot_num_groups << " groups of size " << dot_wgsize << std::endl;
context = cl::Context(device);
queue = cl::CommandQueue(context);
// Create program
cl::Program program(context, kernels);
std::ostringstream args;
args << "-DstartScalar=" << startScalar << " ";
if (sizeof(T) == sizeof(double))
{
args << "-DTYPE=double";
// Check device can do double
if (!device.getInfo<CL_DEVICE_DOUBLE_FP_CONFIG>())
throw std::runtime_error("Device does not support double precision, please use --float");
try
{
program.build(args.str().c_str());
}
catch (cl::Error& err)
{
if (err.err() == CL_BUILD_PROGRAM_FAILURE)
{
std::cout << program.getBuildInfo<CL_PROGRAM_BUILD_LOG>()[0].second << std::endl;
throw err;
}
}
}
else if (sizeof(T) == sizeof(float))
{
args << "-DTYPE=float";
program.build(args.str().c_str());
}
// Create kernels
init_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer, T, T, T>(program, "init");
copy_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer>(program, "copy");
mul_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer>(program, "mul");
add_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer>(program, "add");
triad_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer>(program, "triad");
dot_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer, cl::LocalSpaceArg, cl_int>(program, "stream_dot");
array_size = ARRAY_SIZE;
// Check buffers fit on the device
cl_ulong totalmem = device.getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>();
cl_ulong maxbuffer = device.getInfo<CL_DEVICE_MAX_MEM_ALLOC_SIZE>();
if (maxbuffer < sizeof(T)*ARRAY_SIZE)
throw std::runtime_error("Device cannot allocate a buffer big enough");
if (totalmem < 3*sizeof(T)*ARRAY_SIZE)
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
// Create buffers
d_a = cl::Buffer(context, CL_MEM_READ_WRITE, sizeof(T) * ARRAY_SIZE);
d_b = cl::Buffer(context, CL_MEM_READ_WRITE, sizeof(T) * ARRAY_SIZE);
d_c = cl::Buffer(context, CL_MEM_READ_WRITE, sizeof(T) * ARRAY_SIZE);
d_sum = cl::Buffer(context, CL_MEM_WRITE_ONLY, sizeof(T) * dot_num_groups);
sums = std::vector<T>(dot_num_groups);
}
template <class T>
OCLStream<T>::~OCLStream()
{
delete init_kernel;
delete copy_kernel;
delete mul_kernel;
delete add_kernel;
delete triad_kernel;
delete dot_kernel;
devices.clear();
}
template <class T>
void OCLStream<T>::copy()
{
(*copy_kernel)(
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
d_a, d_c
);
queue.finish();
}
template <class T>
void OCLStream<T>::mul()
{
(*mul_kernel)(
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
d_b, d_c
);
queue.finish();
}
template <class T>
void OCLStream<T>::add()
{
(*add_kernel)(
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
d_a, d_b, d_c
);
queue.finish();
}
template <class T>
void OCLStream<T>::triad()
{
(*triad_kernel)(
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
d_a, d_b, d_c
);
queue.finish();
}
template <class T>
T OCLStream<T>::dot()
{
(*dot_kernel)(
cl::EnqueueArgs(queue, cl::NDRange(dot_num_groups*dot_wgsize), cl::NDRange(dot_wgsize)),
d_a, d_b, d_sum, cl::Local(sizeof(T) * dot_wgsize), array_size
);
cl::copy(queue, d_sum, sums.begin(), sums.end());
T sum = 0.0;
for (T val : sums)
sum += val;
return sum;
}
template <class T>
void OCLStream<T>::init_arrays(T initA, T initB, T initC)
{
(*init_kernel)(
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
d_a, d_b, d_c, initA, initB, initC
);
queue.finish();
}
template <class T>
void OCLStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
cl::copy(queue, d_a, a.begin(), a.end());
cl::copy(queue, d_b, b.begin(), b.end());
cl::copy(queue, d_c, c.begin(), c.end());
}
void getDeviceList(void)
{
// Get list of platforms
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
// Enumerate devices
for (unsigned i = 0; i < platforms.size(); i++)
{
std::vector<cl::Device> plat_devices;
platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices);
devices.insert(devices.end(), plat_devices.begin(), plat_devices.end());
}
cached = true;
}
void listDevices(void)
{
getDeviceList();
// Print device names
if (devices.size() == 0)
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < devices.size(); i++)
{
std::cout << i << ": " << getDeviceName(i) << std::endl;
}
std::cout << std::endl;
}
}
std::string getDeviceName(const int device)
{
if (!cached)
getDeviceList();
std::string name;
cl_device_info info = CL_DEVICE_NAME;
if (device < devices.size())
{
devices[device].getInfo(info, &name);
}
else
{
throw std::runtime_error("Error asking for name for non-existant device");
}
return name;
}
std::string getDeviceDriver(const int device)
{
if (!cached)
getDeviceList();
std::string driver;
if (device < devices.size())
{
devices[device].getInfo(CL_DRIVER_VERSION, &driver);
}
else
{
throw std::runtime_error("Error asking for driver for non-existant device");
}
return driver;
}
template class OCLStream<float>;
template class OCLStream<double>;