BabelStream/main.cpp
Tom Deakin 3deb9f8eff Generalise the run functions to share construction of models and check vectors
An enum is added and set by the command line options to choose the running mode:
all 5 kernels or triad only.

There is now only one run fuction which call the constructor of each
model implementation, calling another routine to run the kernels.
The output is then determined by the enum value.
2021-02-18 12:35:12 +00:00

560 lines
16 KiB
C++

// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include <iostream>
#include <vector>
#include <numeric>
#include <cmath>
#include <limits>
#include <chrono>
#include <algorithm>
#include <iomanip>
#include <cstring>
#define VERSION_STRING "3.4"
#include "Stream.h"
#if defined(CUDA)
#include "CUDAStream.h"
#elif defined(STD)
#include "STDStream.h"
#elif defined(STD20)
#include "STD20Stream.hpp"
#elif defined(HIP)
#include "HIPStream.h"
#elif defined(HC)
#include "HCStream.h"
#elif defined(OCL)
#include "OCLStream.h"
#elif defined(USE_RAJA)
#include "RAJAStream.hpp"
#elif defined(KOKKOS)
#include "KokkosStream.hpp"
#elif defined(ACC)
#include "ACCStream.h"
#elif defined(SYCL)
#include "SYCLStream.h"
#elif defined(OMP)
#include "OMPStream.h"
#endif
// Default size of 2^25
int ARRAY_SIZE = 33554432;
unsigned int num_times = 100;
unsigned int deviceIndex = 0;
bool use_float = false;
bool output_as_csv = false;
bool mibibytes = false;
std::string csv_separator = ",";
template <typename T>
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum);
template <typename T>
void run();
template <typename T>
void run_triad();
// Options for running the benchmark:
// - All 5 kernels (Copy, Add, Mul, Triad, Dot).
// - Triad only.
enum class Benchmark {All, Triad};
// Selected run options.
Benchmark selection = Benchmark::All;
void parseArguments(int argc, char *argv[]);
int main(int argc, char *argv[])
{
parseArguments(argc, argv);
if (!output_as_csv)
{
std::cout
<< "BabelStream" << std::endl
<< "Version: " << VERSION_STRING << std::endl
<< "Implementation: " << IMPLEMENTATION_STRING << std::endl;
}
if (use_float)
run<float>();
else
run<double>();
}
// Run the 5 main kernels
template <typename T>
std::vector<std::vector<double>> run_all(Stream<T> *stream, T& sum)
{
// List of times
std::vector<std::vector<double>> timings(5);
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Main loop
for (unsigned int k = 0; k < num_times; k++)
{
// Execute Copy
t1 = std::chrono::high_resolution_clock::now();
stream->copy();
t2 = std::chrono::high_resolution_clock::now();
timings[0].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Mul
t1 = std::chrono::high_resolution_clock::now();
stream->mul();
t2 = std::chrono::high_resolution_clock::now();
timings[1].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Add
t1 = std::chrono::high_resolution_clock::now();
stream->add();
t2 = std::chrono::high_resolution_clock::now();
timings[2].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Triad
t1 = std::chrono::high_resolution_clock::now();
stream->triad();
t2 = std::chrono::high_resolution_clock::now();
timings[3].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
// Execute Dot
t1 = std::chrono::high_resolution_clock::now();
sum = stream->dot();
t2 = std::chrono::high_resolution_clock::now();
timings[4].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
}
// Compiler should use a move
return timings;
}
// Run the Triad kernel
template <typename T>
std::vector<std::vector<double>> run_triad(Stream<T> *stream)
{
std::vector<std::vector<double>> timings(1);
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Run triad in loop
t1 = std::chrono::high_resolution_clock::now();
for (unsigned int k = 0; k < num_times; k++)
{
stream->triad();
}
t2 = std::chrono::high_resolution_clock::now();
double runtime = std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
timings[0].push_back(runtime);
return timings;
}
// Generic run routine
// Runs the kernel(s) and prints output.
template <typename T>
void run()
{
std::streamsize ss = std::cout.precision();
if (!output_as_csv)
{
if (selection == Benchmark::All)
std::cout << "Running kernels " << num_times << " times" << std::endl;
else if (selection == Benchmark::Triad)
{
std::cout << "Running triad " << num_times << " times" << std::endl;
std::cout << "Number of elements: " << ARRAY_SIZE << std::endl;
}
if (sizeof(T) == sizeof(float))
std::cout << "Precision: float" << std::endl;
else
std::cout << "Precision: double" << std::endl;
if (mibibytes)
{
// MiB = 2^20
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB"
<< " (=" << ARRAY_SIZE*sizeof(T)*pow(2.0, -30.0) << " GiB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -30.0) << " GiB)" << std::endl;
}
else
{
// MB = 10^6
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
}
std::cout.precision(ss);
}
Stream<T> *stream;
#if defined(CUDA)
// Use the CUDA implementation
stream = new CUDAStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(HIP)
// Use the HIP implementation
stream = new HIPStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(HC)
// Use the HC implementation
stream = new HCStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(OCL)
// Use the OpenCL implementation
stream = new OCLStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(USE_RAJA)
// Use the RAJA implementation
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(KOKKOS)
// Use the Kokkos implementation
stream = new KokkosStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(STD)
// Use the STD implementation
stream = new STDStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(STD20)
// Use the C++20 implementation
stream = new STD20Stream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(ACC)
// Use the OpenACC implementation
stream = new ACCStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(SYCL)
// Use the SYCL implementation
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
#elif defined(OMP)
// Use the OpenMP implementation
stream = new OMPStream<T>(ARRAY_SIZE, deviceIndex);
#endif
stream->init_arrays(startA, startB, startC);
// Result of the Dot kernel, if used.
T sum = 0.0;
std::vector<std::vector<double>> timings;
switch (selection)
{
case Benchmark::All:
timings = run_all<T>(stream, sum);
break;
case Benchmark::Triad:
timings = run_triad<T>(stream);
};
// Check solutions
// Create host vectors
std::vector<T> a(ARRAY_SIZE);
std::vector<T> b(ARRAY_SIZE);
std::vector<T> c(ARRAY_SIZE);
stream->read_arrays(a, b, c);
check_solution<T>(num_times, a, b, c, sum);
// Display timing results
if (output_as_csv)
{
std::cout
<< "function" << csv_separator
<< "num_times" << csv_separator
<< "n_elements" << csv_separator
<< "sizeof" << csv_separator
<< ((mibibytes) ? "max_mibytes_per_sec" : "max_mbytes_per_sec") << csv_separator
<< "min_runtime" << csv_separator
<< "max_runtime" << csv_separator
<< "avg_runtime" << std::endl;
}
else
{
std::cout
<< std::left << std::setw(12) << "Function"
<< std::left << std::setw(12) << ((mibibytes) ? "MiBytes/sec" : "MBytes/sec")
<< std::left << std::setw(12) << "Min (sec)"
<< std::left << std::setw(12) << "Max"
<< std::left << std::setw(12) << "Average"
<< std::endl
<< std::fixed;
}
if (selection == Benchmark::All)
{
std::string labels[5] = {"Copy", "Mul", "Add", "Triad", "Dot"};
size_t sizes[5] = {
2 * sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE,
3 * sizeof(T) * ARRAY_SIZE,
3 * sizeof(T) * ARRAY_SIZE,
2 * sizeof(T) * ARRAY_SIZE
};
for (int i = 0; i < timings.size(); ++i)
{
// Get min/max; ignore the first result
auto minmax = std::minmax_element(timings[i].begin()+1, timings[i].end());
// Calculate average; ignore the first result
double average = std::accumulate(timings[i].begin()+1, timings[i].end(), 0.0) / (double)(num_times - 1);
// Display results
if (output_as_csv)
{
std::cout
<< labels[i] << csv_separator
<< num_times << csv_separator
<< ARRAY_SIZE << csv_separator
<< sizeof(T) << csv_separator
<< ((mibibytes) ? pow(2.0, -20.0) : 1.0E-6) * sizes[i] / (*minmax.first) << csv_separator
<< *minmax.first << csv_separator
<< *minmax.second << csv_separator
<< average
<< std::endl;
}
else
{
std::cout
<< std::left << std::setw(12) << labels[i]
<< std::left << std::setw(12) << std::setprecision(3) <<
((mibibytes) ? pow(2.0, -20.0) : 1.0E-6) * sizes[i] / (*minmax.first)
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.first
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.second
<< std::left << std::setw(12) << std::setprecision(5) << average
<< std::endl;
}
}
} else if (selection == Benchmark::Triad)
{
// Display timing results
double total_bytes = 3 * sizeof(T) * ARRAY_SIZE * num_times;
double bandwidth = ((mibibytes) ? pow(2.0, -30.0) : 1.0E-9) * (total_bytes / timings[0][0]);
if (output_as_csv)
{
std::cout
<< "function" << csv_separator
<< "num_times" << csv_separator
<< "n_elements" << csv_separator
<< "sizeof" << csv_separator
<< ((mibibytes) ? "gibytes_per_sec" : "gbytes_per_sec") << csv_separator
<< "runtime"
<< std::endl;
std::cout
<< "Triad" << csv_separator
<< num_times << csv_separator
<< ARRAY_SIZE << csv_separator
<< sizeof(T) << csv_separator
<< bandwidth << csv_separator
<< timings[0][0]
<< std::endl;
}
else
{
std::cout
<< "--------------------------------"
<< std::endl << std::fixed
<< "Runtime (seconds): " << std::left << std::setprecision(5)
<< timings[0][0] << std::endl
<< "Bandwidth (" << ((mibibytes) ? "GiB/s" : "GB/s") << "): "
<< std::left << std::setprecision(3)
<< bandwidth << std::endl;
}
}
delete stream;
}
template <typename T>
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum)
{
// Generate correct solution
T goldA = startA;
T goldB = startB;
T goldC = startC;
T goldSum = 0.0;
const T scalar = startScalar;
for (unsigned int i = 0; i < ntimes; i++)
{
// Do STREAM!
if (! (selection == Benchmark::Triad))
{
goldC = goldA;
goldB = scalar * goldC;
goldC = goldA + goldB;
}
goldA = goldB + scalar * goldC;
}
// Do the reduction
goldSum = goldA * goldB * ARRAY_SIZE;
// Calculate the average error
double errA = std::accumulate(a.begin(), a.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldA); });
errA /= a.size();
double errB = std::accumulate(b.begin(), b.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldB); });
errB /= b.size();
double errC = std::accumulate(c.begin(), c.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldC); });
errC /= c.size();
double errSum = fabs(sum - goldSum);
double epsi = std::numeric_limits<T>::epsilon() * 100.0;
if (errA > epsi)
std::cerr
<< "Validation failed on a[]. Average error " << errA
<< std::endl;
if (errB > epsi)
std::cerr
<< "Validation failed on b[]. Average error " << errB
<< std::endl;
if (errC > epsi)
std::cerr
<< "Validation failed on c[]. Average error " << errC
<< std::endl;
// Check sum to 8 decimal places
if (!(selection == Benchmark::Triad) && errSum > 1.0E-8)
std::cerr
<< "Validation failed on sum. Error " << errSum
<< std::endl << std::setprecision(15)
<< "Sum was " << sum << " but should be " << goldSum
<< std::endl;
}
int parseUInt(const char *str, unsigned int *output)
{
char *next;
*output = strtoul(str, &next, 10);
return !strlen(next);
}
int parseInt(const char *str, int *output)
{
char *next;
*output = strtol(str, &next, 10);
return !strlen(next);
}
void parseArguments(int argc, char *argv[])
{
for (int i = 1; i < argc; i++)
{
if (!std::string("--list").compare(argv[i]))
{
listDevices();
exit(EXIT_SUCCESS);
}
else if (!std::string("--device").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
{
std::cerr << "Invalid device index." << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--arraysize").compare(argv[i]) ||
!std::string("-s").compare(argv[i]))
{
if (++i >= argc || !parseInt(argv[i], &ARRAY_SIZE) || ARRAY_SIZE <= 0)
{
std::cerr << "Invalid array size." << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--numtimes").compare(argv[i]) ||
!std::string("-n").compare(argv[i]))
{
if (++i >= argc || !parseUInt(argv[i], &num_times))
{
std::cerr << "Invalid number of times." << std::endl;
exit(EXIT_FAILURE);
}
if (num_times < 2)
{
std::cerr << "Number of times must be 2 or more" << std::endl;
exit(EXIT_FAILURE);
}
}
else if (!std::string("--float").compare(argv[i]))
{
use_float = true;
}
else if (!std::string("--triad-only").compare(argv[i]))
{
selection = Benchmark::Triad;
}
else if (!std::string("--csv").compare(argv[i]))
{
output_as_csv = true;
}
else if (!std::string("--mibibytes").compare(argv[i]))
{
mibibytes = true;
}
else if (!std::string("--help").compare(argv[i]) ||
!std::string("-h").compare(argv[i]))
{
std::cout << std::endl;
std::cout << "Usage: " << argv[0] << " [OPTIONS]" << std::endl << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h --help Print the message" << std::endl;
std::cout << " --list List available devices" << std::endl;
std::cout << " --device INDEX Select device at INDEX" << std::endl;
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
std::cout << " --float Use floats (rather than doubles)" << std::endl;
std::cout << " --triad-only Only run triad" << std::endl;
std::cout << " --csv Output as csv table" << std::endl;
std::cout << " --mibibytes Use MiB=2^20 for bandwidth calculation (default MB=10^6)" << std::endl;
std::cout << std::endl;
exit(EXIT_SUCCESS);
}
else
{
std::cerr << "Unrecognized argument '" << argv[i] << "' (try '--help')"
<< std::endl;
exit(EXIT_FAILURE);
}
}
}