215 lines
4.7 KiB
Plaintext
215 lines
4.7 KiB
Plaintext
|
|
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
|
// University of Bristol HPC
|
|
//
|
|
// For full license terms please see the LICENSE file distributed with this
|
|
// source code
|
|
|
|
|
|
#include "CUDAStream.h"
|
|
|
|
#define TBSIZE 1024
|
|
|
|
void check_error(void)
|
|
{
|
|
cudaError_t err = cudaGetLastError();
|
|
if (err != cudaSuccess)
|
|
{
|
|
std::cerr << "Error: " << cudaGetErrorString(err) << std::endl;
|
|
exit(err);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
CUDAStream<T>::CUDAStream(const unsigned int ARRAY_SIZE, const int device_index)
|
|
{
|
|
|
|
// The array size must be divisible by TBSIZE for kernel launches
|
|
if (ARRAY_SIZE % TBSIZE != 0)
|
|
{
|
|
std::stringstream ss;
|
|
ss << "Array size must be a multiple of " << TBSIZE;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
|
|
// Set device
|
|
int count;
|
|
cudaGetDeviceCount(&count);
|
|
check_error();
|
|
if (device_index >= count)
|
|
throw std::runtime_error("Invalid device index");
|
|
cudaSetDevice(device_index);
|
|
check_error();
|
|
|
|
// Print out device information
|
|
std::cout << "Using CUDA device " << getDeviceName(device_index) << std::endl;
|
|
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
|
|
|
|
array_size = ARRAY_SIZE;
|
|
|
|
// Check buffers fit on the device
|
|
cudaDeviceProp props;
|
|
cudaGetDeviceProperties(&props, 0);
|
|
if (props.totalGlobalMem < 3*ARRAY_SIZE*sizeof(T))
|
|
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
|
|
|
// Create device buffers
|
|
cudaMalloc(&d_a, ARRAY_SIZE*sizeof(T));
|
|
check_error();
|
|
cudaMalloc(&d_b, ARRAY_SIZE*sizeof(T));
|
|
check_error();
|
|
cudaMalloc(&d_c, ARRAY_SIZE*sizeof(T));
|
|
check_error();
|
|
}
|
|
|
|
|
|
template <class T>
|
|
CUDAStream<T>::~CUDAStream()
|
|
{
|
|
cudaFree(d_a);
|
|
check_error();
|
|
cudaFree(d_b);
|
|
check_error();
|
|
cudaFree(d_c);
|
|
check_error();
|
|
}
|
|
|
|
template <class T>
|
|
void CUDAStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
|
{
|
|
// Copy host memory to device
|
|
cudaMemcpy(d_a, a.data(), a.size()*sizeof(T), cudaMemcpyHostToDevice);
|
|
check_error();
|
|
cudaMemcpy(d_b, b.data(), b.size()*sizeof(T), cudaMemcpyHostToDevice);
|
|
check_error();
|
|
cudaMemcpy(d_c, c.data(), c.size()*sizeof(T), cudaMemcpyHostToDevice);
|
|
check_error();
|
|
}
|
|
|
|
template <class T>
|
|
void CUDAStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
|
{
|
|
// Copy device memory to host
|
|
cudaMemcpy(a.data(), d_a, a.size()*sizeof(T), cudaMemcpyDeviceToHost);
|
|
check_error();
|
|
cudaMemcpy(b.data(), d_b, b.size()*sizeof(T), cudaMemcpyDeviceToHost);
|
|
check_error();
|
|
cudaMemcpy(c.data(), d_c, c.size()*sizeof(T), cudaMemcpyDeviceToHost);
|
|
check_error();
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
__global__ void copy_kernel(const T * a, T * c)
|
|
{
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
c[i] = a[i];
|
|
}
|
|
|
|
template <class T>
|
|
void CUDAStream<T>::copy()
|
|
{
|
|
copy_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_a, d_c);
|
|
check_error();
|
|
cudaDeviceSynchronize();
|
|
check_error();
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void mul_kernel(T * b, const T * c)
|
|
{
|
|
const T scalar = 0.3;
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
b[i] = scalar * c[i];
|
|
}
|
|
|
|
template <class T>
|
|
void CUDAStream<T>::mul()
|
|
{
|
|
mul_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_b, d_c);
|
|
check_error();
|
|
cudaDeviceSynchronize();
|
|
check_error();
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void add_kernel(const T * a, const T * b, T * c)
|
|
{
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
c[i] = a[i] + b[i];
|
|
}
|
|
|
|
template <class T>
|
|
void CUDAStream<T>::add()
|
|
{
|
|
add_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_a, d_b, d_c);
|
|
check_error();
|
|
cudaDeviceSynchronize();
|
|
check_error();
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void triad_kernel(T * a, const T * b, const T * c)
|
|
{
|
|
const T scalar = 0.3;
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
a[i] = b[i] + scalar * c[i];
|
|
}
|
|
|
|
template <class T>
|
|
void CUDAStream<T>::triad()
|
|
{
|
|
triad_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_a, d_b, d_c);
|
|
check_error();
|
|
cudaDeviceSynchronize();
|
|
check_error();
|
|
}
|
|
|
|
|
|
void listDevices(void)
|
|
{
|
|
// Get number of devices
|
|
int count;
|
|
cudaGetDeviceCount(&count);
|
|
check_error();
|
|
|
|
// Print device names
|
|
if (count == 0)
|
|
{
|
|
std::cerr << "No devices found." << std::endl;
|
|
}
|
|
else
|
|
{
|
|
std::cout << std::endl;
|
|
std::cout << "Devices:" << std::endl;
|
|
for (int i = 0; i < count; i++)
|
|
{
|
|
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
std::string getDeviceName(const int device)
|
|
{
|
|
cudaDeviceProp props;
|
|
cudaGetDeviceProperties(&props, device);
|
|
check_error();
|
|
return std::string(props.name);
|
|
}
|
|
|
|
|
|
std::string getDeviceDriver(const int device)
|
|
{
|
|
cudaSetDevice(device);
|
|
check_error();
|
|
int driver;
|
|
cudaDriverGetVersion(&driver);
|
|
check_error();
|
|
return std::to_string(driver);
|
|
}
|
|
|
|
template class CUDAStream<float>;
|
|
template class CUDAStream<double>;
|