BabelStream/HIPStream.cu
James Price 7f4761ae52 Replace write_arrays with init_arrays
This allows each model to initialise their arrays with a parallel
approach, which yields the first touch required for good performance
on NUMA architectures.
2016-11-02 11:22:01 +00:00

221 lines
5.1 KiB
Plaintext

// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "HIPStream.h"
#include "hip/hip_runtime.h"
#define TBSIZE 1024
void check_error(void)
{
hipError_t err = hipGetLastError();
if (err != hipSuccess)
{
std::cerr << "Error: " << hipGetErrorString(err) << std::endl;
exit(err);
}
}
template <class T>
HIPStream<T>::HIPStream(const unsigned int ARRAY_SIZE, const int device_index)
{
// The array size must be divisible by TBSIZE for kernel launches
if (ARRAY_SIZE % TBSIZE != 0)
{
std::stringstream ss;
ss << "Array size must be a multiple of " << TBSIZE;
throw std::runtime_error(ss.str());
}
// Set device
int count;
hipGetDeviceCount(&count);
check_error();
if (device_index >= count)
throw std::runtime_error("Invalid device index");
hipSetDevice(device_index);
check_error();
// Print out device information
std::cout << "Using HIP device " << getDeviceName(device_index) << std::endl;
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
array_size = ARRAY_SIZE;
// Check buffers fit on the device
hipDeviceProp_t props;
hipGetDeviceProperties(&props, 0);
if (props.totalGlobalMem < 3*ARRAY_SIZE*sizeof(T))
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
// Create device buffers
hipMalloc(&d_a, ARRAY_SIZE*sizeof(T));
check_error();
hipMalloc(&d_b, ARRAY_SIZE*sizeof(T));
check_error();
hipMalloc(&d_c, ARRAY_SIZE*sizeof(T));
check_error();
}
template <class T>
HIPStream<T>::~HIPStream()
{
hipFree(d_a);
check_error();
hipFree(d_b);
check_error();
hipFree(d_c);
check_error();
}
template <typename T>
__global__ void init_kernel(hipLaunchParm lp, T * a, T * b, T * c, T initA, T initB, T initC)
{
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
a[i] = initA;
b[i] = initB;
c[i] = initC;
}
template <class T>
void HIPStream<T>::init_arrays(T initA, T initB, T initC)
{
hipLaunchKernel(HIP_KERNEL_NAME(init_kernel), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c, initA, initB, initC);
check_error();
hipDeviceSynchronize();
check_error();
}
template <class T>
void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
// Copy device memory to host
hipMemcpy(a.data(), d_a, a.size()*sizeof(T), hipMemcpyDeviceToHost);
check_error();
hipMemcpy(b.data(), d_b, b.size()*sizeof(T), hipMemcpyDeviceToHost);
check_error();
hipMemcpy(c.data(), d_c, c.size()*sizeof(T), hipMemcpyDeviceToHost);
check_error();
}
template <typename T>
__global__ void copy_kernel(hipLaunchParm lp, const T * a, T * c)
{
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
c[i] = a[i];
}
template <class T>
void HIPStream<T>::copy()
{
hipLaunchKernel(HIP_KERNEL_NAME(copy_kernel), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void mul_kernel(hipLaunchParm lp, T * b, const T * c)
{
const T scalar = startScalar;
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
b[i] = scalar * c[i];
}
template <class T>
void HIPStream<T>::mul()
{
hipLaunchKernel(HIP_KERNEL_NAME(mul_kernel), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void add_kernel(hipLaunchParm lp, const T * a, const T * b, T * c)
{
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
c[i] = a[i] + b[i];
}
template <class T>
void HIPStream<T>::add()
{
hipLaunchKernel(HIP_KERNEL_NAME(add_kernel), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void triad_kernel(hipLaunchParm lp, T * a, const T * b, const T * c)
{
const T scalar = startScalar;
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
a[i] = b[i] + scalar * c[i];
}
template <class T>
void HIPStream<T>::triad()
{
hipLaunchKernel(HIP_KERNEL_NAME(triad_kernel), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
void listDevices(void)
{
// Get number of devices
int count;
hipGetDeviceCount(&count);
check_error();
// Print device names
if (count == 0)
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < count; i++)
{
std::cout << i << ": " << getDeviceName(i) << std::endl;
}
std::cout << std::endl;
}
}
std::string getDeviceName(const int device)
{
hipDeviceProp_t props;
hipGetDeviceProperties(&props, device);
check_error();
return std::string(props.name);
}
std::string getDeviceDriver(const int device)
{
hipSetDevice(device);
check_error();
int driver;
hipDriverGetVersion(&driver);
check_error();
return std::to_string(driver);
}
template class HIPStream<float>;
template class HIPStream<double>;