146 lines
3.0 KiB
C++
146 lines
3.0 KiB
C++
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
|
// University of Bristol HPC
|
|
//
|
|
// For full license terms please see the LICENSE file distributed with this
|
|
// source code
|
|
|
|
|
|
#include "KOKKOSStream.hpp"
|
|
|
|
using namespace Kokkos;
|
|
|
|
template <class T>
|
|
KOKKOSStream<T>::KOKKOSStream(
|
|
const unsigned int ARRAY_SIZE, const int device_index)
|
|
: array_size(ARRAY_SIZE)
|
|
{
|
|
Kokkos::initialize();
|
|
|
|
d_a = new View<double*, DEVICE>("d_a", ARRAY_SIZE);
|
|
d_b = new View<double*, DEVICE>("d_b", ARRAY_SIZE);
|
|
d_c = new View<double*, DEVICE>("d_c", ARRAY_SIZE);
|
|
hm_a = new View<double*, DEVICE>::HostMirror();
|
|
hm_b = new View<double*, DEVICE>::HostMirror();
|
|
hm_c = new View<double*, DEVICE>::HostMirror();
|
|
*hm_a = create_mirror_view(*d_a);
|
|
*hm_b = create_mirror_view(*d_b);
|
|
*hm_c = create_mirror_view(*d_c);
|
|
}
|
|
|
|
template <class T>
|
|
KOKKOSStream<T>::~KOKKOSStream()
|
|
{
|
|
finalize();
|
|
}
|
|
|
|
template <class T>
|
|
void KOKKOSStream<T>::write_arrays(
|
|
const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
|
{
|
|
for(int ii = 0; ii < array_size; ++ii)
|
|
{
|
|
(*hm_a)(ii) = a[ii];
|
|
(*hm_b)(ii) = b[ii];
|
|
(*hm_c)(ii) = c[ii];
|
|
}
|
|
deep_copy(*d_a, *hm_a);
|
|
deep_copy(*d_b, *hm_b);
|
|
deep_copy(*d_c, *hm_c);
|
|
}
|
|
|
|
template <class T>
|
|
void KOKKOSStream<T>::read_arrays(
|
|
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
|
{
|
|
deep_copy(*hm_a, *d_a);
|
|
deep_copy(*hm_b, *d_b);
|
|
deep_copy(*hm_c, *d_c);
|
|
for(int ii = 0; ii < array_size; ++ii)
|
|
{
|
|
a[ii] = (*hm_a)(ii);
|
|
b[ii] = (*hm_b)(ii);
|
|
c[ii] = (*hm_c)(ii);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void KOKKOSStream<T>::copy()
|
|
{
|
|
View<double*, DEVICE> a(*d_a);
|
|
View<double*, DEVICE> b(*d_b);
|
|
View<double*, DEVICE> c(*d_c);
|
|
|
|
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
|
{
|
|
c[index] = a[index];
|
|
});
|
|
cudaDeviceSynchronize();
|
|
}
|
|
|
|
template <class T>
|
|
void KOKKOSStream<T>::mul()
|
|
{
|
|
View<double*, DEVICE> a(*d_a);
|
|
View<double*, DEVICE> b(*d_b);
|
|
View<double*, DEVICE> c(*d_c);
|
|
|
|
const T scalar = 3.0;
|
|
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
|
{
|
|
b[index] = scalar*c[index];
|
|
});
|
|
cudaDeviceSynchronize();
|
|
}
|
|
|
|
template <class T>
|
|
void KOKKOSStream<T>::add()
|
|
{
|
|
View<double*, DEVICE> a(*d_a);
|
|
View<double*, DEVICE> b(*d_b);
|
|
View<double*, DEVICE> c(*d_c);
|
|
|
|
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
|
{
|
|
c[index] = a[index] + b[index];
|
|
});
|
|
|
|
cudaDeviceSynchronize();
|
|
}
|
|
|
|
template <class T>
|
|
void KOKKOSStream<T>::triad()
|
|
{
|
|
View<double*, DEVICE> a(*d_a);
|
|
View<double*, DEVICE> b(*d_b);
|
|
View<double*, DEVICE> c(*d_c);
|
|
|
|
const T scalar = 3.0;
|
|
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
|
{
|
|
a[index] = b[index] + scalar*c[index];
|
|
});
|
|
|
|
cudaDeviceSynchronize();
|
|
}
|
|
|
|
void listDevices(void)
|
|
{
|
|
std::cout << "This is not the device you are looking for.";
|
|
}
|
|
|
|
|
|
std::string getDeviceName(const int device)
|
|
{
|
|
return "Kokkos";
|
|
}
|
|
|
|
|
|
std::string getDeviceDriver(const int device)
|
|
{
|
|
return "Kokkos";
|
|
}
|
|
|
|
//template class KOKKOSStream<float>;
|
|
template class KOKKOSStream<double>;
|
|
|