An enum is added and set by the command line options to choose the running mode: all 5 kernels or triad only. There is now only one run fuction which call the constructor of each model implementation, calling another routine to run the kernels. The output is then determined by the enum value.
560 lines
16 KiB
C++
560 lines
16 KiB
C++
|
|
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
|
// University of Bristol HPC
|
|
//
|
|
// For full license terms please see the LICENSE file distributed with this
|
|
// source code
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <numeric>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <chrono>
|
|
#include <algorithm>
|
|
#include <iomanip>
|
|
#include <cstring>
|
|
|
|
#define VERSION_STRING "3.4"
|
|
|
|
#include "Stream.h"
|
|
|
|
#if defined(CUDA)
|
|
#include "CUDAStream.h"
|
|
#elif defined(STD)
|
|
#include "STDStream.h"
|
|
#elif defined(STD20)
|
|
#include "STD20Stream.hpp"
|
|
#elif defined(HIP)
|
|
#include "HIPStream.h"
|
|
#elif defined(HC)
|
|
#include "HCStream.h"
|
|
#elif defined(OCL)
|
|
#include "OCLStream.h"
|
|
#elif defined(USE_RAJA)
|
|
#include "RAJAStream.hpp"
|
|
#elif defined(KOKKOS)
|
|
#include "KokkosStream.hpp"
|
|
#elif defined(ACC)
|
|
#include "ACCStream.h"
|
|
#elif defined(SYCL)
|
|
#include "SYCLStream.h"
|
|
#elif defined(OMP)
|
|
#include "OMPStream.h"
|
|
#endif
|
|
|
|
// Default size of 2^25
|
|
int ARRAY_SIZE = 33554432;
|
|
unsigned int num_times = 100;
|
|
unsigned int deviceIndex = 0;
|
|
bool use_float = false;
|
|
bool output_as_csv = false;
|
|
bool mibibytes = false;
|
|
std::string csv_separator = ",";
|
|
|
|
template <typename T>
|
|
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum);
|
|
|
|
template <typename T>
|
|
void run();
|
|
|
|
template <typename T>
|
|
void run_triad();
|
|
|
|
// Options for running the benchmark:
|
|
// - All 5 kernels (Copy, Add, Mul, Triad, Dot).
|
|
// - Triad only.
|
|
enum class Benchmark {All, Triad};
|
|
|
|
// Selected run options.
|
|
Benchmark selection = Benchmark::All;
|
|
|
|
void parseArguments(int argc, char *argv[]);
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
|
|
parseArguments(argc, argv);
|
|
|
|
if (!output_as_csv)
|
|
{
|
|
std::cout
|
|
<< "BabelStream" << std::endl
|
|
<< "Version: " << VERSION_STRING << std::endl
|
|
<< "Implementation: " << IMPLEMENTATION_STRING << std::endl;
|
|
}
|
|
|
|
if (use_float)
|
|
run<float>();
|
|
else
|
|
run<double>();
|
|
|
|
}
|
|
|
|
|
|
// Run the 5 main kernels
|
|
template <typename T>
|
|
std::vector<std::vector<double>> run_all(Stream<T> *stream, T& sum)
|
|
{
|
|
|
|
// List of times
|
|
std::vector<std::vector<double>> timings(5);
|
|
|
|
// Declare timers
|
|
std::chrono::high_resolution_clock::time_point t1, t2;
|
|
|
|
// Main loop
|
|
for (unsigned int k = 0; k < num_times; k++)
|
|
{
|
|
// Execute Copy
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
stream->copy();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
timings[0].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
// Execute Mul
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
stream->mul();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
timings[1].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
// Execute Add
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
stream->add();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
timings[2].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
// Execute Triad
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
stream->triad();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
timings[3].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
// Execute Dot
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
sum = stream->dot();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
timings[4].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
}
|
|
|
|
// Compiler should use a move
|
|
return timings;
|
|
}
|
|
|
|
// Run the Triad kernel
|
|
template <typename T>
|
|
std::vector<std::vector<double>> run_triad(Stream<T> *stream)
|
|
{
|
|
|
|
std::vector<std::vector<double>> timings(1);
|
|
|
|
// Declare timers
|
|
std::chrono::high_resolution_clock::time_point t1, t2;
|
|
|
|
// Run triad in loop
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
for (unsigned int k = 0; k < num_times; k++)
|
|
{
|
|
stream->triad();
|
|
}
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
|
|
double runtime = std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
|
|
timings[0].push_back(runtime);
|
|
|
|
return timings;
|
|
}
|
|
|
|
|
|
// Generic run routine
|
|
// Runs the kernel(s) and prints output.
|
|
template <typename T>
|
|
void run()
|
|
{
|
|
std::streamsize ss = std::cout.precision();
|
|
|
|
if (!output_as_csv)
|
|
{
|
|
if (selection == Benchmark::All)
|
|
std::cout << "Running kernels " << num_times << " times" << std::endl;
|
|
else if (selection == Benchmark::Triad)
|
|
{
|
|
std::cout << "Running triad " << num_times << " times" << std::endl;
|
|
std::cout << "Number of elements: " << ARRAY_SIZE << std::endl;
|
|
}
|
|
|
|
|
|
if (sizeof(T) == sizeof(float))
|
|
std::cout << "Precision: float" << std::endl;
|
|
else
|
|
std::cout << "Precision: double" << std::endl;
|
|
|
|
|
|
if (mibibytes)
|
|
{
|
|
// MiB = 2^20
|
|
std::cout << std::setprecision(1) << std::fixed
|
|
<< "Array size: " << ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB"
|
|
<< " (=" << ARRAY_SIZE*sizeof(T)*pow(2.0, -30.0) << " GiB)" << std::endl;
|
|
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB"
|
|
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -30.0) << " GiB)" << std::endl;
|
|
}
|
|
else
|
|
{
|
|
// MB = 10^6
|
|
std::cout << std::setprecision(1) << std::fixed
|
|
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
|
|
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
|
|
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
|
|
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
|
|
}
|
|
std::cout.precision(ss);
|
|
|
|
}
|
|
|
|
Stream<T> *stream;
|
|
|
|
#if defined(CUDA)
|
|
// Use the CUDA implementation
|
|
stream = new CUDAStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(HIP)
|
|
// Use the HIP implementation
|
|
stream = new HIPStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(HC)
|
|
// Use the HC implementation
|
|
stream = new HCStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(OCL)
|
|
// Use the OpenCL implementation
|
|
stream = new OCLStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(USE_RAJA)
|
|
// Use the RAJA implementation
|
|
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(KOKKOS)
|
|
// Use the Kokkos implementation
|
|
stream = new KokkosStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(STD)
|
|
// Use the STD implementation
|
|
stream = new STDStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(STD20)
|
|
// Use the C++20 implementation
|
|
stream = new STD20Stream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(ACC)
|
|
// Use the OpenACC implementation
|
|
stream = new ACCStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(SYCL)
|
|
// Use the SYCL implementation
|
|
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#elif defined(OMP)
|
|
// Use the OpenMP implementation
|
|
stream = new OMPStream<T>(ARRAY_SIZE, deviceIndex);
|
|
|
|
#endif
|
|
|
|
stream->init_arrays(startA, startB, startC);
|
|
|
|
// Result of the Dot kernel, if used.
|
|
T sum = 0.0;
|
|
|
|
std::vector<std::vector<double>> timings;
|
|
|
|
switch (selection)
|
|
{
|
|
case Benchmark::All:
|
|
timings = run_all<T>(stream, sum);
|
|
break;
|
|
case Benchmark::Triad:
|
|
timings = run_triad<T>(stream);
|
|
};
|
|
|
|
// Check solutions
|
|
// Create host vectors
|
|
std::vector<T> a(ARRAY_SIZE);
|
|
std::vector<T> b(ARRAY_SIZE);
|
|
std::vector<T> c(ARRAY_SIZE);
|
|
|
|
|
|
stream->read_arrays(a, b, c);
|
|
check_solution<T>(num_times, a, b, c, sum);
|
|
|
|
// Display timing results
|
|
if (output_as_csv)
|
|
{
|
|
std::cout
|
|
<< "function" << csv_separator
|
|
<< "num_times" << csv_separator
|
|
<< "n_elements" << csv_separator
|
|
<< "sizeof" << csv_separator
|
|
<< ((mibibytes) ? "max_mibytes_per_sec" : "max_mbytes_per_sec") << csv_separator
|
|
<< "min_runtime" << csv_separator
|
|
<< "max_runtime" << csv_separator
|
|
<< "avg_runtime" << std::endl;
|
|
}
|
|
else
|
|
{
|
|
std::cout
|
|
<< std::left << std::setw(12) << "Function"
|
|
<< std::left << std::setw(12) << ((mibibytes) ? "MiBytes/sec" : "MBytes/sec")
|
|
<< std::left << std::setw(12) << "Min (sec)"
|
|
<< std::left << std::setw(12) << "Max"
|
|
<< std::left << std::setw(12) << "Average"
|
|
<< std::endl
|
|
<< std::fixed;
|
|
}
|
|
|
|
|
|
if (selection == Benchmark::All)
|
|
{
|
|
|
|
std::string labels[5] = {"Copy", "Mul", "Add", "Triad", "Dot"};
|
|
size_t sizes[5] = {
|
|
2 * sizeof(T) * ARRAY_SIZE,
|
|
2 * sizeof(T) * ARRAY_SIZE,
|
|
3 * sizeof(T) * ARRAY_SIZE,
|
|
3 * sizeof(T) * ARRAY_SIZE,
|
|
2 * sizeof(T) * ARRAY_SIZE
|
|
};
|
|
|
|
for (int i = 0; i < timings.size(); ++i)
|
|
{
|
|
// Get min/max; ignore the first result
|
|
auto minmax = std::minmax_element(timings[i].begin()+1, timings[i].end());
|
|
|
|
// Calculate average; ignore the first result
|
|
double average = std::accumulate(timings[i].begin()+1, timings[i].end(), 0.0) / (double)(num_times - 1);
|
|
|
|
// Display results
|
|
if (output_as_csv)
|
|
{
|
|
std::cout
|
|
<< labels[i] << csv_separator
|
|
<< num_times << csv_separator
|
|
<< ARRAY_SIZE << csv_separator
|
|
<< sizeof(T) << csv_separator
|
|
<< ((mibibytes) ? pow(2.0, -20.0) : 1.0E-6) * sizes[i] / (*minmax.first) << csv_separator
|
|
<< *minmax.first << csv_separator
|
|
<< *minmax.second << csv_separator
|
|
<< average
|
|
<< std::endl;
|
|
}
|
|
else
|
|
{
|
|
std::cout
|
|
<< std::left << std::setw(12) << labels[i]
|
|
<< std::left << std::setw(12) << std::setprecision(3) <<
|
|
((mibibytes) ? pow(2.0, -20.0) : 1.0E-6) * sizes[i] / (*minmax.first)
|
|
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.first
|
|
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.second
|
|
<< std::left << std::setw(12) << std::setprecision(5) << average
|
|
<< std::endl;
|
|
}
|
|
}
|
|
} else if (selection == Benchmark::Triad)
|
|
{
|
|
// Display timing results
|
|
double total_bytes = 3 * sizeof(T) * ARRAY_SIZE * num_times;
|
|
double bandwidth = ((mibibytes) ? pow(2.0, -30.0) : 1.0E-9) * (total_bytes / timings[0][0]);
|
|
|
|
if (output_as_csv)
|
|
{
|
|
std::cout
|
|
<< "function" << csv_separator
|
|
<< "num_times" << csv_separator
|
|
<< "n_elements" << csv_separator
|
|
<< "sizeof" << csv_separator
|
|
<< ((mibibytes) ? "gibytes_per_sec" : "gbytes_per_sec") << csv_separator
|
|
<< "runtime"
|
|
<< std::endl;
|
|
std::cout
|
|
<< "Triad" << csv_separator
|
|
<< num_times << csv_separator
|
|
<< ARRAY_SIZE << csv_separator
|
|
<< sizeof(T) << csv_separator
|
|
<< bandwidth << csv_separator
|
|
<< timings[0][0]
|
|
<< std::endl;
|
|
}
|
|
else
|
|
{
|
|
std::cout
|
|
<< "--------------------------------"
|
|
<< std::endl << std::fixed
|
|
<< "Runtime (seconds): " << std::left << std::setprecision(5)
|
|
<< timings[0][0] << std::endl
|
|
<< "Bandwidth (" << ((mibibytes) ? "GiB/s" : "GB/s") << "): "
|
|
<< std::left << std::setprecision(3)
|
|
<< bandwidth << std::endl;
|
|
}
|
|
}
|
|
|
|
delete stream;
|
|
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum)
|
|
{
|
|
// Generate correct solution
|
|
T goldA = startA;
|
|
T goldB = startB;
|
|
T goldC = startC;
|
|
T goldSum = 0.0;
|
|
|
|
const T scalar = startScalar;
|
|
|
|
for (unsigned int i = 0; i < ntimes; i++)
|
|
{
|
|
// Do STREAM!
|
|
if (! (selection == Benchmark::Triad))
|
|
{
|
|
goldC = goldA;
|
|
goldB = scalar * goldC;
|
|
goldC = goldA + goldB;
|
|
}
|
|
goldA = goldB + scalar * goldC;
|
|
}
|
|
|
|
// Do the reduction
|
|
goldSum = goldA * goldB * ARRAY_SIZE;
|
|
|
|
// Calculate the average error
|
|
double errA = std::accumulate(a.begin(), a.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldA); });
|
|
errA /= a.size();
|
|
double errB = std::accumulate(b.begin(), b.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldB); });
|
|
errB /= b.size();
|
|
double errC = std::accumulate(c.begin(), c.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldC); });
|
|
errC /= c.size();
|
|
double errSum = fabs(sum - goldSum);
|
|
|
|
double epsi = std::numeric_limits<T>::epsilon() * 100.0;
|
|
|
|
if (errA > epsi)
|
|
std::cerr
|
|
<< "Validation failed on a[]. Average error " << errA
|
|
<< std::endl;
|
|
if (errB > epsi)
|
|
std::cerr
|
|
<< "Validation failed on b[]. Average error " << errB
|
|
<< std::endl;
|
|
if (errC > epsi)
|
|
std::cerr
|
|
<< "Validation failed on c[]. Average error " << errC
|
|
<< std::endl;
|
|
// Check sum to 8 decimal places
|
|
if (!(selection == Benchmark::Triad) && errSum > 1.0E-8)
|
|
std::cerr
|
|
<< "Validation failed on sum. Error " << errSum
|
|
<< std::endl << std::setprecision(15)
|
|
<< "Sum was " << sum << " but should be " << goldSum
|
|
<< std::endl;
|
|
|
|
}
|
|
|
|
int parseUInt(const char *str, unsigned int *output)
|
|
{
|
|
char *next;
|
|
*output = strtoul(str, &next, 10);
|
|
return !strlen(next);
|
|
}
|
|
|
|
int parseInt(const char *str, int *output)
|
|
{
|
|
char *next;
|
|
*output = strtol(str, &next, 10);
|
|
return !strlen(next);
|
|
}
|
|
|
|
void parseArguments(int argc, char *argv[])
|
|
{
|
|
for (int i = 1; i < argc; i++)
|
|
{
|
|
if (!std::string("--list").compare(argv[i]))
|
|
{
|
|
listDevices();
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
else if (!std::string("--device").compare(argv[i]))
|
|
{
|
|
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
|
|
{
|
|
std::cerr << "Invalid device index." << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
else if (!std::string("--arraysize").compare(argv[i]) ||
|
|
!std::string("-s").compare(argv[i]))
|
|
{
|
|
if (++i >= argc || !parseInt(argv[i], &ARRAY_SIZE) || ARRAY_SIZE <= 0)
|
|
{
|
|
std::cerr << "Invalid array size." << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
else if (!std::string("--numtimes").compare(argv[i]) ||
|
|
!std::string("-n").compare(argv[i]))
|
|
{
|
|
if (++i >= argc || !parseUInt(argv[i], &num_times))
|
|
{
|
|
std::cerr << "Invalid number of times." << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (num_times < 2)
|
|
{
|
|
std::cerr << "Number of times must be 2 or more" << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
else if (!std::string("--float").compare(argv[i]))
|
|
{
|
|
use_float = true;
|
|
}
|
|
else if (!std::string("--triad-only").compare(argv[i]))
|
|
{
|
|
selection = Benchmark::Triad;
|
|
}
|
|
else if (!std::string("--csv").compare(argv[i]))
|
|
{
|
|
output_as_csv = true;
|
|
}
|
|
else if (!std::string("--mibibytes").compare(argv[i]))
|
|
{
|
|
mibibytes = true;
|
|
}
|
|
else if (!std::string("--help").compare(argv[i]) ||
|
|
!std::string("-h").compare(argv[i]))
|
|
{
|
|
std::cout << std::endl;
|
|
std::cout << "Usage: " << argv[0] << " [OPTIONS]" << std::endl << std::endl;
|
|
std::cout << "Options:" << std::endl;
|
|
std::cout << " -h --help Print the message" << std::endl;
|
|
std::cout << " --list List available devices" << std::endl;
|
|
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
|
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
|
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
|
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
|
std::cout << " --triad-only Only run triad" << std::endl;
|
|
std::cout << " --csv Output as csv table" << std::endl;
|
|
std::cout << " --mibibytes Use MiB=2^20 for bandwidth calculation (default MB=10^6)" << std::endl;
|
|
std::cout << std::endl;
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
else
|
|
{
|
|
std::cerr << "Unrecognized argument '" << argv[i] << "' (try '--help')"
|
|
<< std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|