BabelStream/cuda-stream.cu

508 lines
16 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*=============================================================================
*------------------------------------------------------------------------------
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
* Based on John D. McCalpins original STREAM benchmark for CPUs
*------------------------------------------------------------------------------
* License:
* 1. You are free to use this program and/or to redistribute
* this program.
* 2. You are free to modify this program for your own use,
* including commercial use, subject to the publication
* restrictions in item 3.
* 3. You are free to publish results obtained from running this
* program, or from works that you derive from this program,
* with the following limitations:
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
* published results must be in conformance to the GPU-STREAM
* Run Rules published at
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
* and incorporated herein by reference.
* The copyright holders retain the
* right to determine conformity with the Run Rules.
* 3b. Results based on modified source code or on runs not in
* accordance with the GPU-STREAM Run Rules must be clearly
* labelled whenever they are published. Examples of
* proper labelling include:
* "tuned GPU-STREAM benchmark results"
* "based on a variant of the GPU-STREAM benchmark code"
* Other comparable, clear and reasonable labelling is
* acceptable.
* 3c. Submission of results to the GPU-STREAM benchmark web site
* is encouraged, but not required.
* 4. Use of this program or creation of derived works based on this
* program constitutes acceptance of these licensing restrictions.
* 5. Absolutely no warranty is expressed or implied.
*———————————————————————————————————-----------------------------------------*/
#include <iostream>
#include <fstream>
#include <vector>
#include <chrono>
#include <cfloat>
#include <cmath>
#include <cuda.h>
#include "common.h"
std::string getDeviceName(int device);
int getDriver(void);
// Code to check CUDA errors
void check_cuda_error(void)
{
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
std::cerr
<< "Error: "
<< cudaGetErrorString(err)
<< std::endl;
exit(err);
}
}
// looper function place more work inside each work item.
// Goal is reduce the dispatch overhead for each group, and also give more controlover the order of memory operations
template <typename T>
__global__ void
copy_looper(const T * a, T * c, int ARRAY_SIZE)
{
int offset = (blockDim.x * blockIdx.x + threadIdx.x);
int stride = blockDim.x * gridDim.x;
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
c[i] = a[i];
}
}
template <typename T>
__global__ void
mul_looper(T * b, const T * c, int ARRAY_SIZE)
{
int offset = blockDim.x * blockIdx.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
const T scalar = 3.0;
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
b[i] = scalar * c[i];
}
}
template <typename T>
__global__ void
add_looper(const T * a, const T * b, T * c, int ARRAY_SIZE)
{
int offset = blockDim.x * blockIdx.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
c[i] = a[i] + b[i];
}
}
template <typename T>
__global__ void
triad_looper( T * a, const T * b, const T * c, int ARRAY_SIZE)
{
int offset = blockDim.x * blockIdx.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
const T scalar = 3.0;
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
a[i] = b[i] + scalar * c[i];
}
}
template <typename T>
__global__ void copy(const T * a, T * c)
{
const int i = blockDim.x * blockIdx.x + threadIdx.x;
c[i] = a[i];
}
template <typename T>
__global__ void mul(T * b, const T * c)
{
const T scalar = 3.0;
const int i = blockDim.x * blockIdx.x + threadIdx.x;
b[i] = scalar * c[i];
}
template <typename T>
__global__ void add(const T * a, const T * b, T * c)
{
const int i = blockDim.x * blockIdx.x + threadIdx.x;
c[i] = a[i] + b[i];
}
template <typename T>
__global__ void triad(T * a, const T * b, const T * c)
{
const T scalar = 3.0;
const int i = blockDim.x * blockIdx.x + threadIdx.x;
a[i] = b[i] + scalar * c[i];
}
int main(int argc, char *argv[])
{
// Print out run information
std::cout
<< "GPU-STREAM" << std::endl
<< "Version: " << VERSION_STRING << std::endl
<< "Implementation: CUDA" << std::endl;
parseArguments(argc, argv);
if (NTIMES < 2)
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
// Config grid size and group size for kernel launching
int gridSize;
if (groups) {
gridSize = groups * groupSize;
} else {
gridSize = ARRAY_SIZE;
}
float operationsPerWorkitem = (float)ARRAY_SIZE / (float)gridSize;
std::cout << "GridSize: " << gridSize << " work-items" << std::endl;
std::cout << "GroupSize: " << groupSize << " work-items" << std::endl;
std::cout << "Operations/Work-item: " << operationsPerWorkitem << std::endl;
if (groups) std::cout << "Using looper kernels:" << std::endl;
std::cout << "Precision: ";
if (useFloat) std::cout << "float";
else std::cout << "double";
std::cout << std::endl << std::endl;
std::cout << "Running kernels " << NTIMES << " times" << std::endl;
if (ARRAY_SIZE % 1024 != 0)
{
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
ARRAY_SIZE -= ARRAY_SIZE % 1024;
std::cout
<< "Warning: array size must divide 1024" << std::endl
<< "Resizing array from " << OLD_ARRAY_SIZE
<< " to " << ARRAY_SIZE << std::endl;
if (ARRAY_SIZE == 0)
throw std::runtime_error("Array size must be >= 1024");
}
// Get precision (used to reset later)
std::streamsize ss = std::cout.precision();
size_t DATATYPE_SIZE;
if (useFloat)
{
DATATYPE_SIZE = sizeof(float);
}
else
{
DATATYPE_SIZE = sizeof(double);
}
// Display number of bytes in array
std::cout << std::setprecision(1) << std::fixed
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
<< std::endl;
std::cout << "Total size: " << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
<< " (=" << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
<< std::endl;
// Reset precision
std::cout.precision(ss);
// Check device index is in range
int count;
cudaGetDeviceCount(&count);
check_cuda_error();
if (deviceIndex >= count)
throw std::runtime_error("Chosen device index is invalid");
cudaSetDevice(deviceIndex);
check_cuda_error();
// Print out device name
std::cout << "Using CUDA device " << getDeviceName(deviceIndex) << std::endl;
// Print out device CUDA driver version
std::cout << "Driver: " << getDriver() << std::endl;
// Check buffers fit on the device
cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceIndex);
if (props.totalGlobalMem < 3*DATATYPE_SIZE*ARRAY_SIZE)
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
// Create host vectors
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
// Initilise arrays
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
{
if (useFloat)
{
((float*)h_a)[i] = 1.0f;
((float*)h_b)[i] = 2.0f;
((float*)h_c)[i] = 0.0f;
}
else
{
((double*)h_a)[i] = 1.0;
((double*)h_b)[i] = 2.0;
((double*)h_c)[i] = 0.0;
}
}
// Create device buffers
void * d_a, * d_b, *d_c;
cudaMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
check_cuda_error();
cudaMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
check_cuda_error();
cudaMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
check_cuda_error();
// Copy host memory to device
cudaMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
check_cuda_error();
cudaMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
check_cuda_error();
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
check_cuda_error();
std::cout << "d_a=" << (void*)d_a << std::endl;
std::cout << "d_b=" << (void*)d_b << std::endl;
std::cout << "d_c=" << (void*)d_c << std::endl;
// Make sure the copies are finished
cudaDeviceSynchronize();
check_cuda_error();
// List of times
std::vector< std::vector<double> > timings;
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Main loop
for (unsigned int k = 0; k < NTIMES; k++)
{
std::vector<double> times;
t1 = std::chrono::high_resolution_clock::now();
if (groups) {
if (useFloat)
copy_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_c, ARRAY_SIZE);
else
copy_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_c, ARRAY_SIZE);
} else {
if (useFloat)
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
else
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
}
check_cuda_error();
cudaDeviceSynchronize();
check_cuda_error();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
t1 = std::chrono::high_resolution_clock::now();
if (groups) {
if (useFloat)
mul_looper<float><<<gridSize,groupSize>>>((float*)d_b, (float*)d_c, ARRAY_SIZE);
else
mul_looper<double><<<gridSize,groupSize>>>((double*)d_b, (double*)d_c, ARRAY_SIZE);
} else {
if (useFloat)
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
else
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
}
check_cuda_error();
cudaDeviceSynchronize();
check_cuda_error();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
t1 = std::chrono::high_resolution_clock::now();
if (groups) {
if (useFloat)
add_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
else
add_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
} else {
if (useFloat)
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
else
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
}
check_cuda_error();
cudaDeviceSynchronize();
check_cuda_error();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
t1 = std::chrono::high_resolution_clock::now();
if (groups) {
if (useFloat)
triad_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
else
triad_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
} else {
if (useFloat)
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
else
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
}
check_cuda_error();
cudaDeviceSynchronize();
check_cuda_error();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
timings.push_back(times);
}
// Check solutions
cudaMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
check_cuda_error();
cudaMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
check_cuda_error();
cudaMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
check_cuda_error();
if (useFloat)
{
check_solution<float>(h_a, h_b, h_c);
}
else
{
check_solution<double>(h_a, h_b, h_c);
}
// Crunch results
size_t sizes[4] = {
2 * DATATYPE_SIZE * ARRAY_SIZE,
2 * DATATYPE_SIZE * ARRAY_SIZE,
3 * DATATYPE_SIZE * ARRAY_SIZE,
3 * DATATYPE_SIZE * ARRAY_SIZE
};
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
double max[4] = {0.0, 0.0, 0.0, 0.0};
double avg[4] = {0.0, 0.0, 0.0, 0.0};
// Ignore first result
for (unsigned int i = 1; i < NTIMES; i++)
{
for (int j = 0; j < 4; j++)
{
avg[j] += timings[i][j];
min[j] = std::min(min[j], timings[i][j]);
max[j] = std::max(max[j], timings[i][j]);
}
}
for (int j = 0; j < 4; j++)
avg[j] /= (double)(NTIMES-1);
double geomean = 1.0;
for (int j = 0; j < 4; j++) {
geomean *= (sizes[j]/min[j]);
}
geomean = pow(geomean, 0.25);
// Display results
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
std::cout
<< std::left << std::setw(12) << "Function"
<< std::left << std::setw(12) << "MBytes/sec"
<< std::left << std::setw(12) << "Min (sec)"
<< std::left << std::setw(12) << "Max"
<< std::left << std::setw(12) << "Average"
<< std::endl;
for (int j = 0; j < 4; j++)
{
std::cout
<< std::left << std::setw(12) << labels[j]
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
<< std::endl;
}
std::cout
<< std::left << std::setw(12) << "GEOMEAN"
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * geomean
<< std::endl;
// Free host vectors
free(h_a);
free(h_b);
free(h_c);
// Free cuda buffers
cudaFree(d_a);
check_cuda_error();
cudaFree(d_b);
check_cuda_error();
cudaFree(d_c);
check_cuda_error();
}
std::string getDeviceName(int device)
{
struct cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, device);
check_cuda_error();
return std::string(prop.name);
}
int getDriver(void)
{
int driver;
cudaDriverGetVersion(&driver);
check_cuda_error();
return driver;
}
void listDevices(void)
{
// Get number of devices
int count;
cudaGetDeviceCount(&count);
check_cuda_error();
// Print device names
if (count == 0)
{
std::cout << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < count; i++)
{
std::cout << i << ": " << getDeviceName(i) << std::endl;
check_cuda_error();
}
std::cout << std::endl;
}
}