331 lines
9.2 KiB
Plaintext
331 lines
9.2 KiB
Plaintext
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <chrono>
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
|
|
#include <cuda.h>
|
|
#include "common.h"
|
|
|
|
std::string getDeviceName(int device);
|
|
|
|
// Code to check CUDA errors
|
|
void check_cuda_error(void)
|
|
{
|
|
cudaError_t err = cudaGetLastError();
|
|
if (err != cudaSuccess)
|
|
{
|
|
std::cerr
|
|
<< "Error: "
|
|
<< cudaGetErrorString(err)
|
|
<< std::endl;
|
|
exit(err);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void copy(const T * a, T * c)
|
|
{
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
c[i] = a[i];
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void mul(T * b, const T * c)
|
|
{
|
|
const T scalar = 3.0;
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
b[i] = scalar * c[i];
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void add(const T * a, const T * b, T * c)
|
|
{
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
c[i] = a[i] + b[i];
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void triad(T * a, const T * b, const T * c)
|
|
{
|
|
const T scalar = 3.0;
|
|
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
a[i] = b[i] + scalar * c[i];
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
|
|
// Print out run information
|
|
std::cout
|
|
<< "GPU-STREAM" << std::endl
|
|
<< "Version: " << VERSION_STRING << std::endl
|
|
<< "Implementation: CUDA" << std::endl;
|
|
|
|
parseArguments(argc, argv);
|
|
|
|
if (NTIMES < 2) throw badntimes();
|
|
|
|
std::cout << "Precision: ";
|
|
if (useFloat) std::cout << "float";
|
|
else std::cout << "double";
|
|
std::cout << std::endl << std::endl;
|
|
|
|
if (ARRAY_SIZE % 1024 != 0)
|
|
{
|
|
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
|
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
|
std::cout
|
|
<< "Warning: array size must divide 1024" << std::endl
|
|
<< "Resizing array from " << OLD_ARRAY_SIZE
|
|
<< " to " << ARRAY_SIZE << std::endl;
|
|
}
|
|
|
|
// Get precision (used to reset later)
|
|
std::streamsize ss = std::cout.precision();
|
|
|
|
size_t DATATYPE_SIZE;
|
|
|
|
if (useFloat)
|
|
{
|
|
DATATYPE_SIZE = sizeof(float);
|
|
}
|
|
else
|
|
{
|
|
DATATYPE_SIZE = sizeof(double);
|
|
}
|
|
|
|
// Display number of bytes in array
|
|
std::cout << std::setprecision(1) << std::fixed
|
|
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
|
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
|
<< std::endl;
|
|
std::cout << "Total size: " << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
|
<< " (=" << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
|
<< std::endl;
|
|
|
|
// Reset precision
|
|
std::cout.precision(ss);
|
|
|
|
// Check device index is in range
|
|
int count;
|
|
cudaGetDeviceCount(&count);
|
|
check_cuda_error();
|
|
if (deviceIndex >= count) throw invaliddevice();
|
|
cudaSetDevice(deviceIndex);
|
|
check_cuda_error();
|
|
|
|
// Print out device name
|
|
std::cout << "Using CUDA device " << getDeviceName(deviceIndex) << std::endl;
|
|
|
|
|
|
// Create host vectors
|
|
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
|
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
|
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
|
|
|
// Initilise arrays
|
|
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
|
{
|
|
if (useFloat)
|
|
{
|
|
((float*)h_a)[i] = 1.0f;
|
|
((float*)h_b)[i] = 2.0f;
|
|
((float*)h_c)[i] = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
((double*)h_a)[i] = 1.0;
|
|
((double*)h_b)[i] = 2.0;
|
|
((double*)h_c)[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
// Create device buffers
|
|
void * d_a, * d_b, *d_c;
|
|
cudaMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
|
|
check_cuda_error();
|
|
cudaMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
|
|
check_cuda_error();
|
|
cudaMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
|
|
check_cuda_error();
|
|
|
|
// Copy host memory to device
|
|
cudaMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
|
check_cuda_error();
|
|
cudaMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
|
check_cuda_error();
|
|
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
|
check_cuda_error();
|
|
|
|
// Make sure the copies are finished
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error();
|
|
|
|
// List of times
|
|
std::vector< std::vector<double> > timings;
|
|
|
|
// Declare timers
|
|
std::chrono::high_resolution_clock::time_point t1, t2;
|
|
|
|
// Main loop
|
|
for (unsigned int k = 0; k < NTIMES; k++)
|
|
{
|
|
std::vector<double> times;
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
if (useFloat)
|
|
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
|
|
else
|
|
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
|
|
check_cuda_error();
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
if (useFloat)
|
|
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
|
|
else
|
|
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
|
|
check_cuda_error();
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
if (useFloat)
|
|
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
|
else
|
|
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
|
check_cuda_error();
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
|
|
t1 = std::chrono::high_resolution_clock::now();
|
|
if (useFloat)
|
|
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
|
else
|
|
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
|
check_cuda_error();
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error();
|
|
t2 = std::chrono::high_resolution_clock::now();
|
|
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
|
|
|
timings.push_back(times);
|
|
|
|
}
|
|
|
|
// Check solutions
|
|
cudaMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
|
check_cuda_error();
|
|
cudaMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
|
check_cuda_error();
|
|
cudaMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
|
check_cuda_error();
|
|
|
|
if (useFloat)
|
|
{
|
|
check_solution<float>(h_a, h_b, h_c);
|
|
}
|
|
else
|
|
{
|
|
check_solution<double>(h_a, h_b, h_c);
|
|
}
|
|
|
|
// Crunch results
|
|
size_t sizes[4] = {
|
|
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
|
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
|
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
|
3 * DATATYPE_SIZE * ARRAY_SIZE
|
|
};
|
|
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
|
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
|
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
|
|
|
// Ignore first result
|
|
for (unsigned int i = 1; i < NTIMES; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
avg[j] += timings[i][j];
|
|
min[j] = std::min(min[j], timings[i][j]);
|
|
max[j] = std::max(max[j], timings[i][j]);
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < 4; j++)
|
|
avg[j] /= (double)(NTIMES-1);
|
|
|
|
// Display results
|
|
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
|
std::cout
|
|
<< std::left << std::setw(12) << "Function"
|
|
<< std::left << std::setw(12) << "MBytes/sec"
|
|
<< std::left << std::setw(12) << "Min (sec)"
|
|
<< std::left << std::setw(12) << "Max"
|
|
<< std::left << std::setw(12) << "Average"
|
|
<< std::endl;
|
|
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
std::cout
|
|
<< std::left << std::setw(12) << labels[j]
|
|
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
|
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
|
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
|
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
|
<< std::endl;
|
|
}
|
|
|
|
// Free host vectors
|
|
free(h_a);
|
|
free(h_b);
|
|
free(h_c);
|
|
|
|
}
|
|
|
|
std::string getDeviceName(int device)
|
|
{
|
|
struct cudaDeviceProp prop;
|
|
cudaGetDeviceProperties(&prop, device);
|
|
check_cuda_error();
|
|
return std::string(prop.name);
|
|
}
|
|
|
|
void listDevices(void)
|
|
{
|
|
// Get number of devices
|
|
int count;
|
|
cudaGetDeviceCount(&count);
|
|
check_cuda_error();
|
|
|
|
// Print device names
|
|
if (count == 0)
|
|
{
|
|
std::cout << "No devices found." << std::endl;
|
|
}
|
|
else
|
|
{
|
|
std::cout << std::endl;
|
|
std::cout << "Devices:" << std::endl;
|
|
for (int i = 0; i < count; i++)
|
|
{
|
|
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
|
check_cuda_error();
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
}
|
|
|