BabelStream/ocl-stream.cpp
2015-07-16 16:36:30 +01:00

414 lines
12 KiB
C++

#include <iostream>
#include <fstream>
#include <vector>
#include <chrono>
#include <cfloat>
#include <iomanip>
#include <cmath>
#define __CL_ENABLE_EXCEPTIONS
#include "cl.hpp"
#define DATATYPE double
unsigned int ARRAY_SIZE = 50000000;
bool useFloat = false;
#define NTIMES 10
#define MIN(a,b) ((a) < (b)) ? (a) : (b)
#define MAX(a,b) ((a) > (b)) ? (a) : (b)
#define VERSION_STRING "0.0"
void parseArguments(int argc, char *argv[]);
std::string getDeviceName(const cl::Device& device);
unsigned getDeviceList(std::vector<cl::Device>& devices);
struct badfile : public std::exception
{
virtual const char * what () const throw ()
{
return "Cannot open kernel file";
}
};
struct badtype : public std::exception
{
virtual const char * what () const throw ()
{
return "Datatype is not 4 or 8";
}
};
struct invaliddevice : public std::exception
{
virtual const char * what () const throw ()
{
return "Chosen device index is invalid";
}
};
size_t sizes[4] = {
2 * sizeof(DATATYPE) * ARRAY_SIZE,
2 * sizeof(DATATYPE) * ARRAY_SIZE,
3 * sizeof(DATATYPE) * ARRAY_SIZE,
3 * sizeof(DATATYPE) * ARRAY_SIZE
};
void check_solution(std::vector<DATATYPE>& a, std::vector<DATATYPE>& b, std::vector<DATATYPE>& c)
{
// Generate correct solution
DATATYPE golda = 1.0;
DATATYPE goldb = 2.0;
DATATYPE goldc = 0.0;
const DATATYPE scalar = 3.0;
for (unsigned int i = 0; i < NTIMES; i++)
{
goldc = golda;
goldb = scalar * goldc;
goldc = golda + goldb;
golda = goldb + scalar * goldc;
}
// Calculate average error
double erra = 0.0;
double errb = 0.0;
double errc = 0.0;
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
{
erra += fabs(a[i] - golda);
errb += fabs(b[i] - goldb);
errc += fabs(c[i] - goldc);
}
erra /= (double)ARRAY_SIZE;
errb /= (double)ARRAY_SIZE;
errc /= (double)ARRAY_SIZE;
double epsi;
if (sizeof(DATATYPE) == 4) epsi = 1.0E-6;
else if (sizeof(DATATYPE) == 8) epsi = 1.0E-13;
else throw badtype();
if (erra > epsi)
std::cout
<< "Validation failed on a[]. Average error " << erra
<< std::endl;
if (errb > epsi)
std::cout
<< "Validation failed on b[]. Average error " << errb
<< std::endl;
if (errc > epsi)
std::cout
<< "Validation failed on c[]. Average error " << errc
<< std::endl;
}
cl_uint deviceIndex = 0;
int main(int argc, char *argv[])
{
// Print out run information
std::cout
<< "GPU-STREAM" << std::endl
<< "Version: " << VERSION_STRING << std::endl
<< "Implementation: OpenCL" << std::endl << std::endl;
try
{
parseArguments(argc, argv);
// Open the Kernel source
std::ifstream in("ocl-stream-kernels.cl");
if (!in.is_open()) throw badfile();
std::string kernels(std::istreambuf_iterator<char>(in), (std::istreambuf_iterator<char>()));
// Setup OpenCL
// Get list of devices
std::vector<cl::Device> devices;
getDeviceList(devices);
// Check device index is in range
if (deviceIndex >= devices.size()) throw invaliddevice();
cl::Device device = devices[deviceIndex];
cl::Context context(device);
cl::CommandQueue queue(context);
cl::Program program(context, kernels);
// Print out device name
std::string name = getDeviceName(device);
std::cout << "Using OpenCL device " << name << std::endl;
try
{
program.build();
}
catch (cl::Error& e)
{
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
std::string buildlog = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
std::cerr
<< "Build error:"
<< buildlog
<< std::endl;
throw e;
}
cl::make_kernel<cl::Buffer, cl::Buffer> copy(program, "copy");
cl::make_kernel<cl::Buffer, cl::Buffer> mul(program, "mul");
cl::make_kernel<cl::Buffer, cl::Buffer, cl::Buffer> add(program, "add");
cl::make_kernel<cl::Buffer, cl::Buffer, cl::Buffer> triad(program, "triad");
// Create host vectors
std::vector<DATATYPE> h_a(ARRAY_SIZE, 1.0);
std::vector<DATATYPE> h_b(ARRAY_SIZE, 2.0);
std::vector<DATATYPE> h_c(ARRAY_SIZE, 0.0);
// Create device buffers
cl::Buffer d_a(context, CL_MEM_READ_WRITE, sizeof(DATATYPE) * ARRAY_SIZE);
cl::Buffer d_b(context, CL_MEM_READ_WRITE, sizeof(DATATYPE) * ARRAY_SIZE);
cl::Buffer d_c(context, CL_MEM_READ_WRITE, sizeof(DATATYPE) * ARRAY_SIZE);
// Copy host memory to device
cl::copy(queue, h_a.begin(), h_a.end(), d_a);
cl::copy(queue, h_b.begin(), h_b.end(), d_b);
cl::copy(queue, h_c.begin(), h_c.end(), d_c);
// Make sure the copies are finished
queue.finish();
// List of times
std::vector< std::vector<double> > timings;
// Declare timers
std::chrono::high_resolution_clock::time_point t1, t2;
// Main loop
for (unsigned int k = 0; k < NTIMES; k++)
{
std::vector<double> times;
t1 = std::chrono::high_resolution_clock::now();
copy(
cl::EnqueueArgs(
queue,
cl::NDRange(ARRAY_SIZE)),
d_a, d_c);
queue.finish();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
t1 = std::chrono::high_resolution_clock::now();
mul(
cl::EnqueueArgs(
queue,
cl::NDRange(ARRAY_SIZE)),
d_b, d_c);
queue.finish();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
t1 = std::chrono::high_resolution_clock::now();
add(
cl::EnqueueArgs(
queue,
cl::NDRange(ARRAY_SIZE)),
d_a, d_b, d_c);
queue.finish();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
t1 = std::chrono::high_resolution_clock::now();
triad(
cl::EnqueueArgs(
queue,
cl::NDRange(ARRAY_SIZE)),
d_a, d_b, d_c);
queue.finish();
t2 = std::chrono::high_resolution_clock::now();
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
timings.push_back(times);
}
// Check solutions
cl::copy(queue, d_a, h_a.begin(), h_a.end());
cl::copy(queue, d_b, h_b.begin(), h_b.end());
cl::copy(queue, d_c, h_c.begin(), h_c.end());
check_solution(h_a, h_b, h_c);
// Crunch results
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
double max[4] = {0.0, 0.0, 0.0, 0.0};
double avg[4] = {0.0, 0.0, 0.0, 0.0};
// Ignore first result
for (unsigned int i = 1; i < NTIMES; i++)
{
for (int j = 0; j < 4; j++)
{
avg[j] += timings[i][j];
min[j] = MIN(min[j], timings[i][j]);
max[j] = MAX(max[j], timings[i][j]);
}
}
for (int j = 0; j < 4; j++)
avg[j] /= (double)(NTIMES-1);
// Display results
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
std::cout
<< std::left << std::setw(12) << "Function"
<< std::left << std::setw(12) << "MBytes/sec"
<< std::left << std::setw(12) << "Min (sec)"
<< std::left << std::setw(12) << "Max"
<< std::left << std::setw(12) << "Average"
<< std::endl;
for (int j = 0; j < 4; j++)
{
std::cout
<< std::left << std::setw(12) << labels[j]
<< std::left << std::setw(12) << 1.0E-06 * sizes[j]/min[j]
<< std::left << std::setw(12) << min[j]
<< std::left << std::setw(12) << max[j]
<< std::left << std::setw(12) << avg[j]
<< std::endl;
}
}
// Catch OpenCL Errors and display information
catch (cl::Error& e)
{
std::cerr
<< "Error: "
<< e.what()
<< "(" << e.err() << ")"
<< std::endl;
}
catch (std::exception& e)
{
std::cerr
<< "Error: "
<< e.what()
<< std::endl;
}
}
unsigned getDeviceList(std::vector<cl::Device>& devices)
{
// Get list of platforms
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
// Enumerate devices
for (unsigned int i = 0; i < platforms.size(); i++)
{
std::vector<cl::Device> plat_devices;
platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices);
devices.insert(devices.end(), plat_devices.begin(), plat_devices.end());
}
return devices.size();
}
std::string getDeviceName(const cl::Device& device)
{
std::string name;
cl_device_info info = CL_DEVICE_NAME;
// Special case for AMD
#ifdef CL_DEVICE_BOARD_NAME_AMD
device.getInfo(CL_DEVICE_VENDOR, &name);
if (strstr(name.c_str(), "Advanced Micro Devices"))
info = CL_DEVICE_BOARD_NAME_AMD;
#endif
device.getInfo(info, &name);
return name;
}
int parseUInt(const char *str, cl_uint *output)
{
char *next;
*output = strtoul(str, &next, 10);
return !strlen(next);
}
void parseArguments(int argc, char *argv[])
{
for (int i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "--list"))
{
// Get list of devices
std::vector<cl::Device> devices;
getDeviceList(devices);
// Print device names
if (devices.size() == 0)
{
std::cout << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (unsigned i = 0; i < devices.size(); i++)
{
std::cout << i << ": " << getDeviceName(devices[i]) << std::endl;
}
std::cout << std::endl;
}
exit(0);
}
else if (!strcmp(argv[i], "--device"))
{
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
{
std::cout << "Invalid device index" << std::endl;
exit(1);
}
}
else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s"))
{
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
{
std::cout << "Invalid array size" << std::endl;
exit(1);
}
}
else if (!strcmp(argv[i], "--float"))
{
useFloat = true;
}
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
{
std::cout << std::endl;
std::cout << "Usage: ./gpu-stream-ocl [OPTIONS]" << std::endl << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h --help Print the message" << std::endl;
std::cout << " --list List available devices" << std::endl;
std::cout << " --device INDEX Select device at INDEX" << std::endl;
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
std::cout << " --float Enable use of floats instead of doubles" << std::endl;
std::cout << std::endl;
exit(0);
}
else
{
std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')"
<< std::endl;
exit(1);
}
}
}