141 lines
6.0 KiB
TeX
141 lines
6.0 KiB
TeX
\documentclass[../ising_model.tex]{subfiles}
|
|
|
|
\begin{document}
|
|
\section{Results}\label{sec:results}
|
|
\subsection{Burn-in time}\label{subsec:burnin_time}
|
|
$\boldsymbol{Draft}$
|
|
We start with a lattice where $L = 20$, to study the burn-in time, that is the
|
|
number of Monte Carlo cycles necessary for the system to reach an equilibrium.
|
|
We consider two different temperatures $T_{1} = 1.0 J/k_{B}$ and $T_{2} = 2.4 J/k_{B}$,
|
|
where $T_{2}$ is close to the critical temperature. We can use the correlation
|
|
time $\tau \approx L^{d + z}$ to determine time, where $d$ is the dimensionality
|
|
of the system and $z = 2.1665 \pm 0.0012$ \footnote{This value was determined by
|
|
Nightingale and Blöte for the Metropolis algorithm.}
|
|
% Need to include a section of Onsager's analytical result.
|
|
We show the numerical estimates for temperature $T_{1}$ of $\langle \epsilon \rangle$
|
|
in Figure \ref{fig:burn_in_energy_1_0} and $\langle |m| \rangle$ in Figure
|
|
\ref{fig:burn_in_magnetization_1_0}. For temperature $T_{2}$, the numercal estimate
|
|
of $\langle \epsilon \rangle$ is shown in Figure \ref{fig:burn_in_energy_2_4} and
|
|
$\langle |m| \rangle$ in Figure \ref{fig:burn_in_magnetization_2_4}. The lattice
|
|
is initialized in both an ordered and an unordered state. We observe that for
|
|
$T_{1}$ there is no change in either expectation value with increasing number of
|
|
Monte Carlo cycles, when we start with an ordered state. As for the unordered
|
|
lattice, we observe a change for the first 5000 MC cycles, where it stabilizes.
|
|
The approximated expected energy is $-2$ and expected magnetization is $1.0$,
|
|
which is to be expected for temperature 0f $1.0$. T is below the critical and the
|
|
pdf using $T = 1.0$ result in
|
|
\begin{align*}
|
|
p(s|T=1.0) &= \frac{1}{e^{-\beta \sum E(s)}} e^{-\beta E(s)} \\
|
|
&= \frac{1}{e^{-(1/k_{B}) \sum E(s)}} e^{-(1/k_{B}) E(s)} \ .
|
|
\end{align*}
|
|
% Burn-in figures
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_1_0.pdf}
|
|
\caption{$\langle |m| \rangle$ as a function of time, for $T = 1.0 J / k_{B}$}
|
|
\label{fig:burn_in_magnetization_1_0}
|
|
\end{figure}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/burn_in_time_energy_1_0.pdf}
|
|
\caption{$\langle \epsilon \rangle$ as a function of time, for $T = 1.0 J / k_{B}$}
|
|
\label{fig:burn_in_energy_1_0}
|
|
\end{figure}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_2_4.pdf}
|
|
\caption{$\langle |m| \rangle$ as a function of time, for $T = 2.4 J / k_{B}$}
|
|
\label{fig:burn_in_magnetization_2_4}
|
|
\end{figure}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/burn_in_time_energy_2_4.pdf}
|
|
\caption{$\langle \epsilon \rangle$ as a function of time, for $T = 2.4 J / k_{B}$}
|
|
\label{fig:burn_in_energy_2_4}
|
|
\end{figure}
|
|
|
|
|
|
\subsection{Probability distribution}\label{subsec:probability_distribution}
|
|
$\boldsymbol{Draft}$
|
|
% Histogram figures
|
|
We use the estimated burn-in time to set starting time for sampling, then generate
|
|
samples to plot in a histogram for $T_{1}$ in Figure \ref{fig:histogram_1_0} and
|
|
$T_{2}$ in Figure \ref{fig:histogram_2_4}. For $T_{1}$ we can see that most samples
|
|
have the expected value $-2$, we have a distribution with low variance.
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/pd_estimate_1_0.pdf}
|
|
\caption{Histogram $T = 1.0 J / k_{B}$}
|
|
\label{fig:histogram_1_0}
|
|
\end{figure}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/pd_estimate_2_4.pdf}
|
|
\caption{Histogram $T = 2.4 J / k_{B}$}
|
|
\label{fig:histogram_2_4}
|
|
\end{figure}
|
|
|
|
|
|
\subsection{Phase transition}\label{subsec:phase_transition}
|
|
$\boldsymbol{Draft}$
|
|
% Phase transition figures
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/energy.pdf}
|
|
\caption{$\langle \epsilon \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
|
\label{fig:phase_energy}
|
|
\end{figure}
|
|
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/magnetization.pdf}
|
|
\caption{$\langle |m| \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
|
\label{fig:phase_magnetization}
|
|
\end{figure}
|
|
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/heat_capacity.pdf}
|
|
\caption{$C_{V}$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
|
\label{fig:phase_heat}
|
|
\end{figure}
|
|
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/susceptibility.pdf}
|
|
\caption{$\chi$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
|
\label{fig:phase_susceptibility}
|
|
\end{figure}
|
|
We include results for 10 million MC cycles in Appendix \ref{sec:extra_results}
|
|
|
|
|
|
\subsection{Critical temperature}\label{subsec:critical_temperature}
|
|
$\boldsymbol{Draft}$
|
|
We use the critical temperatures found in previous section, in addition to the
|
|
scaling relation in Equation \eqref{eq:critical_intinite}
|
|
\begin{equation}
|
|
T_{c} - T_{c}(L = \infty) = \alpha L^{-1}
|
|
\label{eq:critical_intinite}
|
|
\end{equation}
|
|
to estimate the critical temperature for a lattize of infinte size. We also
|
|
compared the estimate with the analytical solution
|
|
\begin{equation}
|
|
T_{c}(L = \infty) = \frac{2}{\ln (1 + \sqrt{2})} J/k_{B} \approx 2.269 J/k_{B}
|
|
\end{equation}
|
|
using linear regression. In Figure \ref{fig:linreg} we find the critical
|
|
temperatures as function of the inverse lattice size. When the lattice size increase
|
|
toward infinity, $1/L$ goes toward zero, we find the intercept which gives us an
|
|
estimated value of the critical temperature for a lattice of infinite size.
|
|
|
|
% Critical temp regression figure
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/linreg.pdf}
|
|
\caption{Linear regression, where $\beta_{0}$ is the intercept $T_{c}(L = \infty)$ and $\beta_{1}$ is the slope.}
|
|
\label{fig:linreg}
|
|
\end{figure}
|
|
|
|
|
|
|
|
\end{document}
|