Simplify/roll back unneeded modifications

This commit is contained in:
Thomas Gibson 2022-09-08 11:44:37 -05:00
parent f44cd6fdd2
commit 85d80915f6
3 changed files with 49 additions and 75 deletions

View File

@ -23,17 +23,23 @@ void check_error(void)
template <class T>
HIPStream<T>::HIPStream(const int ARRAY_SIZE, const int device_index)
: array_size{ARRAY_SIZE},
block_count(array_size / (TBSIZE * elements_per_lane))
{
// The array size must be divisible by total number of elements
// moved per block for kernel launches
if (ARRAY_SIZE % (TBSIZE * elements_per_lane) != 0)
// The array size must be divisible by TBSIZE for kernel launches
if (ARRAY_SIZE % TBSIZE != 0)
{
std::stringstream ss;
ss << "Array size must be a multiple of elements operated on per block ("
<< TBSIZE * elements_per_lane
ss << "Array size must be a multiple of " << TBSIZE;
throw std::runtime_error(ss.str());
}
// The array size must be divisible by total number of elements
// moved per block for the dot kernel
if (ARRAY_SIZE % (TBSIZE * dot_elements_per_lane) != 0)
{
std::stringstream ss;
ss << "Array size for the dot kernel must be a multiple of elements operated on per block ("
<< TBSIZE * dot_elements_per_lane
<< ").";
throw std::runtime_error(ss.str());
}
@ -52,12 +58,13 @@ HIPStream<T>::HIPStream(const int ARRAY_SIZE, const int device_index)
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
array_size = ARRAY_SIZE;
dot_num_blocks = array_size / (TBSIZE * dot_elements_per_lane);
// Allocate the host array for partial sums for dot kernels using hipHostMalloc.
// This creates an array on the host which is visible to the device. However, it requires
// synchronization (e.g. hipDeviceSynchronize) for the result to be available on the host
// after it has been passed through to a kernel.
hipHostMalloc(&sums, sizeof(T) * block_count, hipHostMallocNonCoherent);
hipHostMalloc(&sums, sizeof(T) * dot_num_blocks, hipHostMallocNonCoherent);
check_error();
// Check buffers fit on the device
@ -121,113 +128,90 @@ void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector
check_error();
}
template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE)
__global__
void copy_kernel(const T * a, T * c)
template <typename T>
__global__ void copy_kernel(const T * a, T * c)
{
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
c[i] = a[i];
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// c[gidx + j] = a[gidx + j];
}
template <class T>
void HIPStream<T>::copy()
{
copy_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
copy_kernel<T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE)
__global__
void mul_kernel(T * b, const T * c)
template <typename T>
__global__ void mul_kernel(T * b, const T * c)
{
const T scalar = startScalar;
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
b[i] = scalar * c[i];
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// b[gidx + j] = scalar * c[gidx + j];
}
template <class T>
void HIPStream<T>::mul()
{
mul_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
mul_kernel<T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE)
__global__
void add_kernel(const T * a, const T * b, T * c)
template <typename T>
__global__ void add_kernel(const T * a, const T * b, T * c)
{
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
c[i] = a[i] + b[i];
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// c[gidx + j] = a[gidx + j] + b[gidx + j];
}
template <class T>
void HIPStream<T>::add()
{
add_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
add_kernel<T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE)
__global__
void triad_kernel(T * a, const T * b, const T * c)
template <typename T>
__global__ void triad_kernel(T * a, const T * b, const T * c)
{
const T scalar = startScalar;
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
a[i] = b[i] + scalar * c[i];
// const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
// for (size_t j = 0; j < elements_per_lane; ++j)
// a[gidx + j] = b[gidx + j] + scalar * c[gidx + j];
}
template <class T>
void HIPStream<T>::triad()
{
triad_kernel<elements_per_lane, T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
triad_kernel<T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE)
__global__ void nstream_kernel(T * __restrict a, const T * __restrict b, const T * __restrict c)
template <typename T>
__global__ void nstream_kernel(T * a, const T * b, const T * c)
{
const T scalar = startScalar;
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
for (size_t j = 0; j < elements_per_lane; ++j)
a[gidx + j] += b[gidx + j] + scalar * c[gidx + j];
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
a[i] += b[i] + scalar * c[i];
}
template <class T>
void HIPStream<T>::nstream()
{
nstream_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
nstream_kernel<T><<<dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0>>>(d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <size_t elements_per_lane, typename T>
__launch_bounds__(TBSIZE)
template <typename T>
__global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
{
__shared__ T tb_sum[TBSIZE];
@ -236,7 +220,7 @@ __global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
size_t i = blockDim.x * blockIdx.x + local_i;
tb_sum[local_i] = 0.0;
for (size_t j = 0; j < elements_per_lane && i < array_size; ++j, i += blockDim.x*gridDim.x)
for (; i < array_size; i += blockDim.x*gridDim.x)
tb_sum[local_i] += a[i] * b[i];
for (size_t offset = blockDim.x / 2; offset > 0; offset /= 2)
@ -255,13 +239,13 @@ __global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
template <class T>
T HIPStream<T>::dot()
{
dot_kernel<elements_per_lane, T><<<dim3(block_count), dim3(TBSIZE), 0, 0>>>(d_a, d_b, sums, array_size);
dot_kernel<T><<<dim3(dot_num_blocks), dim3(TBSIZE), 0, 0>>>(d_a, d_b, sums, array_size);
check_error();
hipDeviceSynchronize();
check_error();
T sum = 0.0;
for (int i = 0; i < block_count; i++)
for (int i = 0; i < dot_num_blocks; i++)
sum += sums[i];
return sum;

View File

@ -14,39 +14,31 @@
#include "Stream.h"
#define IMPLEMENTATION_STRING "HIP"
#define DOT_READ_DWORDS_PER_LANE 4
template <class T>
class HIPStream : public Stream<T>
{
#ifdef __HIP_PLATFORM_NVCC__
#ifndef DWORDS_PER_LANE
#define DWORDS_PER_LANE 1
#endif
#else
#ifndef DWORDS_PER_LANE
#define DWORDS_PER_LANE 4
#endif
#endif
// Make sure that either:
// DWORDS_PER_LANE is less than sizeof(T), in which case we default to 1 element
// DOT_READ_DWORDS_PER_LANE is less than sizeof(T), in which case we default to 1 element
// or
// DWORDS_PER_LANE is divisible by sizeof(T)
static_assert((DWORDS_PER_LANE * sizeof(unsigned int) < sizeof(T)) ||
(DWORDS_PER_LANE * sizeof(unsigned int) % sizeof(T) == 0),
"DWORDS_PER_LANE not divisible by sizeof(element_type)");
// DOT_READ_DWORDS_PER_LANE is divisible by sizeof(T)
static_assert((DOT_READ_DWORDS_PER_LANE * sizeof(unsigned int) < sizeof(T)) ||
(DOT_READ_DWORDS_PER_LANE * sizeof(unsigned int) % sizeof(T) == 0),
"DOT_READ_DWORDS_PER_LANE not divisible by sizeof(element_type)");
static constexpr unsigned int dwords_per_lane{DWORDS_PER_LANE};
// Take into account the datatype size
// That is, if we specify 4 DWORDS_PER_LANE, this is 2 FP64 elements
// That is, for 4 DOT_READ_DWORDS_PER_LANE, this is 2 FP64 elements
// and 4 FP32 elements
static constexpr unsigned int elements_per_lane{
(DWORDS_PER_LANE * sizeof(unsigned int)) < sizeof(T) ? 1 : (
DWORDS_PER_LANE * sizeof(unsigned int) / sizeof(T))};
static constexpr unsigned int dot_elements_per_lane{
(DOT_READ_DWORDS_PER_LANE * sizeof(unsigned int)) < sizeof(T) ? 1 : (
DOT_READ_DWORDS_PER_LANE * sizeof(unsigned int) / sizeof(T))};
protected:
// Size of arrays
int array_size;
int block_count;
int dot_num_blocks;
// Host array for partial sums for dot kernel
T *sums;

View File

@ -2,8 +2,6 @@
register_flag_required(CMAKE_CXX_COMPILER
"Absolute path to the AMD HIP C++ compiler")
register_flag_optional(DWORDS_PER_LANE "Flag indicating the number of dwords to process per wavefront lane." 4)
macro(setup)
register_definitions(DWORDS_PER_LANE=${DWORDS_PER_LANE})
# nothing to do here as hipcc does everything correctly, what a surprise!
endmacro()